Event Shapes in $t\bar{t}$ and QCD Events at the LHC 15th IMPRS Workshop

Martin Härtig

Max-Planck-Institut für Physik, München Fakultät für Physik, Universität Würzburg

February 1, 2009

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Introduction to Event Shapes The ATLAS Experiment at the LHC

The ATLAS Experiment at the LHC

- The LHC will create p-p collisions at energies of $\sqrt{s} = 14 \,\mathrm{TeV}$
- 2009: Collisions at $\sqrt{s} = 900 \, {\rm GeV} \mbox{ and } 2.36 \, {\rm TeV} \label{eq:solution}$
- 2010: Collisions at $\sqrt{s} = 7 \, \text{TeV}$ anticipated, $\mathcal{L} \approx 100 \, \text{pb}^{-1}$
- Will be a top quark factory ($\mathcal{O}(10k)$ top quark pairs)
- Four major physics experiments: ALICE, ATLAS, CMS, LHCb
- ATLAS: A Toroidal LHC ApparatuS One of two multi-purpose experiments at the LHC

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Introduction to Event Shapes The ATLAS Experiment at the LHC

The ATLAS Experiment at the LHC

- Main aims of the ATLAS experiment:
 - Find or exclude the Higgs boson
 - Find evidence for Supersymmetry and Dark Matter
 - Search for extra dimensions
 - Investigate CP violation and QCD processes

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Introduction to Event Shapes The ATLAS Experiment at the LHC

The ATLAS Calorimeter System

- Total coverage: $|\eta| \le 4.9$ $(\theta \le 0.85^{\circ})$
- A total of 192000 readout channels
- High granularity up to $|\eta| \leq 2.5 \, (\theta \leq 9.4^\circ)$
- Allows for reconstruction of single final state particles, perfect for calculating Event Shapes

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Introduction to Event Shapes **Event Shapes**

Calculating Event Shapes

- One of the best known Event Shapes: Transverse Thrust
- Project calorimeter clusters on Thrust axis $n_{T,C}$

- Require leading jets to be within central region
- Normalization to sum of all transverse momenta
- For two collimated jets $T_{\perp,\mathcal{C}} \rightarrow 1$, for isotropic events, $T_{\perp,\mathcal{C}} \rightarrow \frac{1}{2}$

Introduction to Event Shapes

Event Shapes

Why Event Shapes?

- Event Shapes are theoretically well understood and experimentally accessible
- Important for QCD and tuning Monte Carlo generators
- Jets with higher invariant masses have a greater opening angle, hence a smaller Thrust value

Event Shapes in $t\bar{t}$

Event Shapes are sensitive to invariant masses, hence reflect if a top quark is in the event

Introduction to Event Shapes

Event Shapes

Event Shapes in Signal and Background

Figure: Transverse Thrust

Figure: Flip Value y_{56}

- Works well for Thrust
- Works even better for other Event Shapes

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Multivariate Analysis with TMVA From Thrust to Multivariate Analysis

From Thrust to Multivariate Analysis

- In principle, we can now use Event Shapes in an analysis to discriminate signal and background
- Problem: One Event Shape variable does not have enough discrimination power to discriminate signal from background

Multivariate Analysis

Solution: Combine multiple Event Shape variables

- Multiple approaches possible: Neural Networks, BDT, Likelihood Analysis or Fisher Discriminant
- Fisher method found to work best in the analysis, uses linear combination of input variables

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Multivariate Analysis with TMVA Results

Results

- Signal: $t\bar{t}$ full hadronic (MC@NLO, $\sqrt{s} = 10 \text{ TeV}$)
- Background: QCD multijet events (Pythia, $\sqrt{s} = 10 \text{ TeV}$)
- \bullet Preselection: 6 Jets, $2\times 40, 4\times 20\,{\rm GeV/c}$
- Tag Jets: Require two leading jets to be within $|\eta| \leq 2.1$
- Application of the Fisher method
- Cut flow for 100 pb^{-1} :

	Before cuts	Preselection	Tag Jets	Fisher
Signal	15000	8800	910	360
Background	$3.2\cdot 10^8$	$5.0\cdot 10^6$	$1.4\cdot 10^5$	$1.4 \cdot 10^{4}$
S/B	$4.7 \cdot 10^{-5}$	$1.8\cdot10^{-3}$	$6.5\cdot10^{-3}$	$2.6 \cdot 10^{-2}$

Result

 ${\sf S}/{\sf B}$ gain by a factor of 14 between Preselection and Fisher

Event Shapes in $t\bar{t}$ and QCD Events at the LHC Measuring Event Shapes (Matrix Method) Matrix Method

Measuring Event Shapes (Work in Progress)

- We want to measure the signal and background rate, using a cut based "matrix method"
- Example with a toy model (two gaussian distributions)

• For a certain cut value, the number of observed events is:

$$\begin{array}{lll} N_{\rm obs}^{\rm (cut \ 1)} & = & \varepsilon_{\rm sig}^{(1)} \cdot N_{\rm sig} + \varepsilon_{\rm bkg}^{(1)} \cdot N_{\rm bkg} \\ N_{\rm obs}^{\rm (cut \ 2)} & = & \varepsilon_{\rm sig}^{(2)} \cdot N_{\rm sig} + \varepsilon_{\rm bkg}^{(2)} \cdot N_{\rm bkg} \end{array}$$

- The efficiencies ε are taken from simulation
- Can solve for $N_{\rm sig}$ and $N_{\rm bkg}$ using two cuts, least squares fit for more than two cuts

Measuring Event Shapes (Matrix Method)

Matrix Method

Measuring Event Shapes (Work in Progress)

- Left: Fit of $N_{\rm sig}$ and $N_{\rm bkg}$ in a five cut scenario. Isolines at $\Delta\chi^2=2$
- Right: Distribution of reconstructed $N_{\rm sig}$ from an ensemble test with 10000 entries. Shows that σ is of order \sqrt{N}

Measuring Event Shapes (Matrix Method)

Matrix Method

Measuring Event Shapes (Work in Progress)

- Next step: Measure a shape distribution at five different cuts
- Assumption: Distribution across 1 bin is accurate Efficiencies obtained with Monte Carlo simulations are right
- Then: Perform the least squares fit in each bin, obtain the signal distribution for the whole histogram
- Still has to be fully implemented and tested on different generators

Summary

- Event Shapes are a valuable tool for discriminating top quark events
- Also valuable for measuring QCD properties and tuning Monte Carlo generators
- May be used for measuring the top quark mass
- Event Shapes used in a multivariate analysis were found to improve the S/B ratio by a factor of 14
- I am currently working on a method to measure signal and background distributions of Event Shapes

Fisher Discriminant

- Mathematically, transforms the variable space
- A linear combination of all input variables
- Determines a hyper plane which separates the signal and background as far as possible

 Works best on uncorrelated gaussian distributions with different mean values

backup

Results

• Fisher performs better than Likelihood and other analyses

Pull Distribution

