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Quantum Phase Transitions

Quantum phase transitions . . .

are driven by quantum fluctuations

identified by non–analytical points
in the ground state energy

accessible by varying a physical
parameter g at T = 0

Interesting quantum phase
transition are

order ←→ disorder

supersolid ←→ superfluid

High–TC superconductors



Mimicking Condensed Matter Systems

Realizations of spin models

Search for “exotic” phases that
do not fit into Landau theory

◮ Topological phases
◮ Critical spin liquids

Heisenberg antiferromagnet on
triangular (or Kagomé) lattice

[A.Micheli, Nat-Phys–287(2006)]

[A.Micheli, PRL–A76, 043604(2007)]

Cold polar molecules in optical
lattices offer possibilities to

◮ realize and control strongly
correlated quantum states

◮ simulate spin models in the
strong coupling limit



Experiments with Cold Polar Molecules

[Jun Ye et al, Science Vol. 322(2008)]

Experimental realization with
photo–association

Polar molecules are prepared in
their rotational & vibrational
ground state



Properties of Polar Molecules

Hetero–nuclear molecules (partial charges)

electronic–, roto-vibrational– and
rotational excitations

Polar molecules are sensitive to external
electric fields in dipole approximation

◮ permanent dipole moments
≈ 1 . . . 10 debye
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◮ Cold molecules near
electronical–, vibrational– and
rotational ground state

◮ Rigid rotor H = BJ 2



Polar Molecules in External Fields

Rigid rotor in static electric
fields

H = BJ 2 − d0Edc

◮ leads to a dc–Stark shift
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Interacting Polar Molecules in Optical Traps

The optical trap can be realized
by a pair of circularly polarized
counter propagating laser beams

Eopt(r) = Eopt cos
(
ωL

c
z
)

e1

trapping the molecules in the
xy–plane

[A.Micheli, PRL–A76, 043604(2007)]

The Hamiltonian describing a single molecule

H (t) =
p2

2m
+Vtrap + BJ 2 − d0E0dc − d · Eac(t)

Strong dipole–dipole interactions are tunable with external fields

Vdd =
d1 · d2 − 3(d1 · er )(er · d2)

r3



Realizing the XXZ Model

The Hamiltonian in the
RWA reads

H = −
~

2

(

∆ Ω0

Ω0 −∆

)

+ E0,01

RWA accounts for energy conservation

eiωLt ≈ 0 ei(ωL+ω)t ≈ 0
emission of a photon emission and activation

e−iωLt ≈ 0 e−i(ωL+ω)t ≈ 0
absorption and deactivation absorption of a photon

E [B]

E∗

E↑

E1±1

0

E↓

|φ0 0〉 ≡ |↓〉

|φ1 0〉 ≡ |↑〉

~Ω↑↓
q=0

~∆

Coupling of |φ0 0〉 and |φ1 0〉 with
linear polarized microwaves

Near resonant coupling to satisfy
dipole approximation and rotating
wave approximation

Induced dipole moments

d
↑↑
0 =

〈

↑
∣

∣ d0
∣

∣↑
〉

, d↓↓
0 =

〈

↓
∣

∣ d0
∣

∣↓
〉

and d
↑↓
0 =

〈

↑
∣

∣ d0
∣

∣↓
〉



Realizing the XXZ Model

Spin–1/2 XXZ model for many body systems on a square lattice

H = J

N∑

i,j=1
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3
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Dipol–Dipole Interaction

−
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hi · Si
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single molecules

with separation vector ri = aRi , “spin” S = ~

2σ, and “magnetic” field h

Different coupling strength: In–axis Jz and in–plane J⊥
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Tuning of Coupling Constants

The detuning ∆ can be chosen
such that hz = 0

hx = Ω0 needed for relaxation, small
due to weak coupling

By varying β = dEdc/B −→ different
models depending on the angle ϑ(β)

AF–Ising

Antiferro–
Heisenberg

AF–XY
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For J⊥ = Jz ⇒ ϑ = π/2

◮ Heisenberg antiferromagnet
realizable for β ≈ 1.6876

◮ minimal possible

ϑ ≈ 90◦ . . . 19.7◦



Phase Diagram of the XXZ Model
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Realization of the t − J Model

Allow hopping of molecules in lattice

Doping with holes by leaving vacancies

Explore strong coupling limit t/U ≪ 1

Three parameters to adjust h = 0,
Jz = J⊥ = J and −J/4
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with J = 4t2/U and U being the Coulomb repulsion



Summary and Outlook

Polar Molecules in optical lattices
are convenient as . . .

Quantum simulator for
antiferromagnets

Spin models with frustration
(e.g. no Neél ordering)
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