

Signal Vertex Selection

and

the Impact of Pile Up on the b-tagging Performance in the ATLAS experiment

pile up and minimum bias

proton proton collisions every 25 ns at a centre of mass energy of 14 TeV $L=10^{34}$ cm⁻²s⁻¹ (design Luminosity)

 \rightarrow in average 20 inelastic proton proton interactions per bunch crossing

 $L=10^{33} \text{cm}^{-2} \text{s}^{-1}$ (75ns) \rightarrow 6.9 interactions

 $L=10^{32} \text{cm}^{-2} \text{s}^{-1}$ (450ns) \rightarrow 4.1 interactions

Physikalisches Institut

pile up and minimum bias

proton proton collisions every 25 ns at a centre of mass energy of 14 TeV $L=10^{34}$ cm⁻²s⁻¹ (design Luminosity)

 \rightarrow in average **20** inelastic proton proton interactions per bunch crossing

 $L=10^{33} \text{cm}^{-2} \text{s}^{-1}$ (75ns) \rightarrow 6.9 interactions

 $L=10^{32} \text{cm}^{-2} \text{s}^{-1}$ (450ns) \rightarrow 4.1 interactions

Physikalisches Institut

Johanna Bronner

track and vertex properties

Physikalisches Institut

Albert-Ludwigs-Universität Freiburg

vertex selection methods

• sum of transverse momentum: • likelihood ratio: • vertex probability: $S_{p_T}^2 = \sum_{N_{tr}} p_T^2$ $L'(\vec{p_T}, N_{tr})$ $P'_{vtx}(\vec{p_T}, N_{tr})$

• advantage: only minimum bias hypothesis needed!

neural network

 $NN(\mu_j(\vec{p}_T), N_{tr}, \Psi)$

•input variables: track multiplicity, sphericity and the moments μ of the p_T distribution

Physikalisches Institut

comparing selection methods

misidentification rate (=fraction of events, where the signal was <u>not</u> selected) vs. vertex multiplicity (N_{vtx})

- \bullet likelihood L and vertex probability P_{vtx} not optimal due to correlations
- •neural network shows the best performance
- same conclusion for H-> $\gamma\gamma$ und ttbar

Physikalisches Institut

Albert-Ludwigs

ATLAS software tool for vertex selection implemented

- vertex selection now independent of primary vertex reconstruction
- ${}^{\bullet}$ so far $S_{pT},\,P_{vtx}$ and NN available

misidentification rate on WH sample with $\langle N_{mb} \rangle = 6.9$

- old method: $\sum p_T^2 \sqrt{N_{tr}}$: 4.5±0.1 %
- new tool: S_{pT}^2 : 3.8±0.1 % (now default)

NN : 3.4±0.1%

misidentification rate of S_{pT}^2 :

ttbar : 0.38±0.02%

WH: 3.8±0.01%

H->γγ: 40±0.5 %

b-tagging algorithms

b-tagging: separation of b-jets from c- and light-jets(u,d,s)

- B-hadron characteristic: lifetime τ_B =1.5 ps
- ->flight length ~3 mm

Physikalisches Institut

Albert-Ludwigs

-> reconstructable secondary vertex (SV)

investigated b-tagging algorithms:

- •<u>IP2D</u>: based on transversal (| –) impact parameter
- •<u>IP3D</u>: based on longitudinal (| –) and transversal impact parameter
- •further SV1 and COMB algorithms studied

First step of b-tagging:

•track selection to remove minimum bias tracks $(z_{tr}-z_{pv})$

First step of b-tagging:

•track selection to remove minimum bias tracks $(z_{tr}-z_{pv})$

First step of b-tagging:

•track selection to remove minimum bias tracks $(z_{tr}-z_{pv})$

b-tagging degrades due to:

pile up tracks:

contamination of min. bias tracks in signal jets

First step of b-tagging:

•track selection to remove minimum bias tracks $(z_{tr}-z_{pv})$

b-tagging degrades due to:

pile up tracks:

contamination of min. bias tracks in signal jets

signal vertex misidentification:

no tracks left in signal jets after track selection

both effects could be studied independently

•e.g. for b-tagging efficiency 60%-> light jet rejection degrades ~10%

•IP3D more effected by pile up than IP2D, because min. bias tracks fake lifetime in z-direction, (but overall performance of IP3D is better)

in green: track contamination, but no vertex misidentification

in black: track contamination and vertex misidentification

for a b-tagging efficiency of 60% the light jet rejection degrades additional 10% already for <u>low luminosity!</u>

(reminder: misidentification for WH and $\langle N_{mb} \rangle = 6.9 : 3.8\%$)

summary

- identification of signal vertex crucial for physics analysis
 e.g. b-tagging
- development of several new methods for signal vertex selection
 - neural network and sum p_T^2 show best performance
 - likelihood and vertex probability not optimal due to correlations
 - tool implemented in official ATLAS Software
- investigation of b-tagging degradation due to pile up (Nmb=6.9)
 - disentanglement of two effects: track contamination and vertex misidentification
 - both effects leave significant impact: ~10% for b-tagging efficiency of 60% already for low luminosity
 - at design luminosity more severe degradation expected

Backup:

S_{pT} method

vertex probability

arbitrary units normalized to

10⁻¹

10⁻²

10⁻³

10-

0

12

10

misidentification rate [%]

0.2 0.3

01

 $- P_{Vtx}(\vec{p}_{\tau})$

 $- P_{Vtx}'(\vec{p}_{\tau}, N_{tr})$

- P_{Vtx}"(**ρ**, Ν, ,Ψ)

minimum bias

----- tī

WH

---- H→γγ

work-in-progress

0.4 0.5

0.6

0.7

0.8

0.9

P_{Vtx}"

Vertex probability:

1. track compatibility with min. bias hypothesis:

 $\mathcal{P}_{tr,i}(p_{T,i}) = \int_{n_T}^{\infty} p df^{mb}(p_T) dp_T$

2. probability of a vertex with a set of tracks with $\vec{p}_T = (p_{T,1}, ..., p_{T,N_{tr}})$, to be a min. bias vertex:

likelihood ratio

Physikalisches Institut

Albert-Ludwigs-Universität Freiburg

N_{vtx}

20

. H→γγ(**p**)

L_{MB}(\vec{p}_{τ})

80

<u></u> *L*'(**p**_T,N_{tr})

16

 $L''(\vec{p}_{\tau}, N_{tr}, \Psi)$

18

 $L_{MB}'(\vec{p}_{\tau}, N_{tr})$

 L_{MB} "(\vec{p}_{τ} , N_{tr} , Ψ)

work-in-progress

120

100

likelihood ratio

 $H \to \gamma \gamma$ $(\overrightarrow{p}, N_{tr})$

 $_{H \rightarrow \gamma \gamma}$ "($\vec{p}_{T}, N_{tr}, \Psi$)

NN for vertex selection

• Neural network:

Input variables: Track multiplicity and Sphericity and 10 first moments of p_Tdistribution

$$\mu_0 = \frac{1}{N_{tr}} \sum_{i=1}^{N_{tr}} p_{T,i}$$

21

$$\mu_j = \frac{1}{N_{tr}} \sum_{i=1}^{N_{tr}} (p_{T,i} - \mu_0)^j \quad (j > 0)$$

Physikalisches Institut

moments of p_T -distribution

correlation test

"real" simulated vertices:

here correlation possible

Monte-Carlo toy studie:

uncorrelated input variables!

Misidentification rate:

	N _{mb}	$\sum p_T^2 \cdot \sqrt{N_{tr}}$	$\mathcal{P}_{Vtx}(ec{p_T})$	$\mathcal{S}_{p_T}^2$	NN
$t\bar{t}$	4.1	$(0.33 \pm 0.01)\%$	$(0.42 \pm 0.02)\%$	$(0.24 \pm 0.01)\%$	$(0.20 \pm 0.01)\%$
	6.9	$(0.49 \pm 0.02)\%$	$(0.63 \pm 0.02)\%$	$(0.38 \pm 0.02)\%$	$(0.32 \pm 0.02)\%$
WH	4.1	$(3.2 \pm 0.1)\%$	$(4.0 \pm 0.1)\%$	$(2.7 \pm 0.1)\%$	$(2.5 \pm 0.1)\%$
	6.9	$(4.5 \pm 0.1)\%$	$(5.6 \pm 0.1)\%$	$(3.8 \pm 0.1)\%$	$(3.4 \pm 0.1)\%$
$H o \gamma \gamma$	4.1	$(23.1 \pm 0.2)\%$	$(28.9 \pm 0.2)\%$	$(22.2 \pm 0.2)\%$	$(21.9 \pm 0.2)\%$
	6.9	$(43.3 \pm 0.5)\%$	$(42.9 \pm 0.5)\%$	$(40.4 \pm 0.5)\%$	$(37.9 \pm 0.5)\%$

b-tagging plots

some more b-tagging plots

Physikalisches Institut

Albert-Ludwigs-<u>Univ</u>ersität Freiburg