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= Holonomies, Wilson loops, Spin networks, etc.

This recasting is not trivial

Idea: try and consider a theory with a natural connection variable

= Hilbert-Palatini theory (in arbitrary dimensions?)
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Introduction: General Relativity (GR)

GR is a relativistic theory of gravity.
Gravitational interaction £ Spacetime dynamics
@ Spacetime metric g,: ds? = guvdxHx”
@ Spacetime connection I ,,": V,vP = 0, vP =T ,,Pv"
© Riemann (curvature) tensor Ry,,," = 20,T,," + 2r[M|pArW“
Square brackets denote antisymmetrization: Aj,,; = 3 (Au — Avy)

® Ricci tensor R, = Ryu” , Ricci scalar R = R,/

Action of the gravitational field (Einstein-Hilbert action):

Sen = / dP*tix . \/=gR
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HP theory is a modification of GR

@ D + 1-dimensional internal space with Minkowski metric 7,

Vielbein e, and inverse vielbein eu’: 8w = eu’el,JnU

e Internal connection wM,J: Dyv’! = 0,v! —wy v

Internal curvature F, l,, =2 (5[#%,], +w[ﬂ|, Wi K J)

its “spacetime version” being F.,° = e,'e” jF 17,
_ P E_ F K
Fuv = Foun” F=F,

J

Note: w,,;” is not related to I',,,” or e

Hilbert-Palatini action:
1

Sup = 2/c/DHx . ee“,e”JFWU
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Introduction: Comparison of GR with HP theory

Einstein-Hilbert action: Sgy = [ dP*tix . /—gR

6SEH

Euler-Lagrange equation: 3z 20= R — %Rg,w =0

Hilbert-Palatini action: Syp = %de‘Hx . ee“,e”JFWU
Euler-Lagrange equations:

6Sen 1 _
66”, 70:>FMV_§FgMV70

O0SEH

!
Swy? =0= Fup” = Ru,p’

pvp

= Matter-free GR and HP theory are equivalent on-shell
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Hilbert-Palatini theory: Spacetime split

« Spacetime split

] Assumption: Spacetime
5t
topology M =R x ¢

st Foliation of M into
> hypersurfaces ¥y & o

%,  of constant time t
Source: T. Thiemann. Modern Canonical The Ch0|ce Of tis arbltrary!
Quantum General Relativity (2007)
Parametrization with Pullback all spatial quantities on o
] " a 1ol
N... lapse function N = N7, e," — e ea,
J J J
. Wy~ — Wy, Wy, etc.
NH ... shift vector . e
_ 1 a__ et e?
N - _ee',e" ' N - et jetd
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Hilbert-Palatini theory: Legendre transform

Canonical variables:

Coordinates ‘ e/ ‘ €, ‘ wa

Momenta ‘ |_|t/ =0 ‘ M, =0 ‘ nt/_/ =0 ‘ Mne,, = 2ee[t/ea]J

/

=>constraints: H,H5,G1y
H = 3N NP KLY, Hy =N R, Gy = DaN?y,
Incorporate e;/ and e,’ into N, N2, N?,
Get rid of additional freedom by introducing simplicity constraint:
S ke =P NPky
HP-Hamiltonian:

H= / dPx . (J\/H + NH, +AYG,, + CabUKLSabIJKL>
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ab WKL) ccd MNOP abed UKL . MNOP
{B KL [bab ] , S mnop [Ccd ]} =: F* ukLmnop [bab Ced ]

{BabUKL [babum_] H [N]} — zabUKL [babum_]

IJKLMNOP
Assume 3 (F71)_, such that
1 IJKLMNOP __ pef _ (ef) {[MNOP]
(]: )abcd F UKLQRST = 5(cd)5[QR5T]
~ MNOP . b 1 IJKLMNOP
Then E|Ccd o =27 /JKL(j: )abcd
IJKL IJKL

= Replace arbitrary c,p, in Hamiltonian by ¢,
= Adjust H, if needed: H := H + /%-EabUKLSabUK/_
= B2,k now Poisson-commutes with Hamiltonian

Still, 828, ;. and B2P,, are second-class contraints
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IJKLMNOP

has not been found
abcd

Proof of 3 (F71)
Problem: For D > 3, §2 ks are not independent (same for B2%;;'s)

However, there is an indication that no further constraints exist

@ Spacetime split in internal space: | — 0,

© Time gauge 19; =0

© New canonical variables pair K,; = wagj, E? = M2
@ Gy, splits into Go; and Gj;

@ Solve S x;, Bk and Go;

= ADM theory (Hamiltonian formulation of GR)
No further constraints needed to obtain ADM
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@ HP theory provides a natural connection variable

@ Hamiltonian formulation of HP theory has
second-class constraints

© Solving second-class constraints leads to ADM theory,
i.e. no progress

Note: In 3 + 1 dimensions one can modify the HP action slightly and obtain a
theory which reduces to the quantizable ABI theory, see N. B. e Sa. Int. J.
Mod. Phys. D, 10, 261 (2001)

Outlook

@ Investigations of other GR reformulations
@ Maybe LQG “predicts” 3 + 1-dimensional spacetime?
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