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ABSTRACT

Type Ia supernovae (SNe Ia) provided the first strong evidence that the expansion of the universe

is accelerating. With SN samples now more than ten times larger than those used for the original

discovery and joined by other cosmological probes, this discovery is on even firmer ground. Two

recent, related studies (Nielsen et al. 2016 and Colin et al. 2019, hereafter N16 and C19, respectively)

have claimed to undermine the statistical significance of the SN Ia constraints. Rubin & Hayden

(2016) (hereafter RH16) showed N16 made an incorrect assumption about the distributions of SN Ia

light-curve parameters, while C19 also fails to remove the impact of the motion of the solar system

from the SN redshifts, interpreting the resulting errors as evidence of a dipole in the deceleration

parameter. Building on RH16, we outline the errors C19 makes in their treatment of the data and

inference on cosmological parameters. Reproducing the C19 analysis with our proposed fixes, we find

that the dipole parameters have little effect on the inferred cosmological parameters. We thus affirm

the conclusion of RH16: the evidence for acceleration is secure.

1. INTRODUCTION

The discovery of the accelerated expansion of the universe (Riess et al. 1998; Perlmutter et al. 1999) was originally

made through the use of type Ia supernovae (SNe Ia). With measurements of light-curve shape and color, the

luminosity can be standardized so that the apparent magnitude can give the distance. Today, multiple cosmological

probes combine together to provide a largely consistent picture of the universe on large scales (Planck Collaboration

et al. 2018).

A recent study (Colin et al. 2019, hereafter C19) claims that this picture is wrong. They investigate the Joint Light-

curve Analysis (JLA) SN Ia compilation (Betoule et al. 2014) and find evidence of a dipole anisotropy in the local

deceleration parameter on ∼ 100 Mpc scales. C19 claims that this dipole is larger and more statistically significant

than the monopole acceleration, for which they find only weak evidence. C19 alleges that this dipole gives rise to

falsely strong evidence of the accelerated expansion.

We reevaluate the C19 analysis and find four significant problems, each affecting their results or interpretation.

1. C19’s primary analysis makes the plainly incorrect assumption that SN Ia light-curve shape and color distribu-

tions are constant as a function of redshift (after selection cuts). That incorrect assumption comes from Nielsen

et al. (2016) (hereafter N16), which C19 builds on. However, Rubin & Hayden (2016) (hereafter RH16) has

already demonstrated the inaccuracy of this assumption, discussing the need for redshift-dependent observed

populations. We summarize that discussion, C19’s new (since N16) arguments in favor of this incorrect assump-

tion, and counter C19’s objections using statistical significance and physically motivated reasoning. Incorrectly

assuming redshift-independent observed distributions has little effect on inferring the dipole parameters, but

causes large biases in the monopole cosmological parameters. The net result of these biases weakens a portion of

the standardization of distant SNe, moving these SNe brighter and thus biasing the inferred cosmology towards

less acceleration.
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2. Shockingly, C19 use heliocentric redshifts to compute their comoving model distances, leaving the well-established

motion of the solar system with respect to the cosmic microwave background to imprint on the SN redshifts.

They further use SNe as close as redshift 0.01, where the decision to use heliocentric or CMB redshifts affects

the distance modulus at up to (5/log(10))(370 km/s)/(0.01 c) ≈ ±0.27 magnitudes. This distance modulus

difference is far dominant over per-SN distance uncertainty and is correlated across the sky. In addition to

using heliocentric redshift, C19 removed the peculiar-velocity covariance terms from the JLA distance-modulus-

uncertainty covariance matrix. This is in keeping with the spirit of using heliocentric redshifts, as C19 did not

apply a peculiar-velocity model. However the removal of these covariance terms has a significant impact. When

the full JLA peculiar-velocity covariance matrix is included in the analysis, we find no statistically significant

anisotropy at 2σ, even when using C19’s preferred heliocentric redshift. We show that these two related decisions

are the primary driver of C19’s claimed dipole anisotropy.

C19’s justification of the heliocentric choice is weak, citing evidence that bulk flows may exist on larger-than-

expected scales. However, the choice to work in heliocentric redshifts is arbitrary; C19 shows no evidence that

the heliocentric frame is closer to the average reference frame of nearby SN hosts than the CMB frame, let

alone that it is better than employing the CMB frame plus corrections for known peculiar velocities (as the JLA

analysis did). If the authors of C19 are concerned about the impact of peculiar velocities, then it makes very

little sense to remove the peculiar-velocity-uncertainty covariances from the analysis.

3. C19 calls out the hemispheric imbalance of surveys included in the JLA compilation; most SNe included are

from Northern-hemisphere telescopes. However, C19 completely ignores consistent cosmological results from

SNe published more recently than JLA that have been obtained with Southern-hemisphere telescopes (Carnegie

Supernova Project Krisciunas et al. 2017 and the Dark Energy Survey Abbott et al. 2019). C19 also ignores

their own analysis’s failure to find a strong correlation between the dipole term and the monopole term (their

Figure 3), which suggests that choice of hemisphere does not affect the JLA analysis.

4. The C19 preferred model for the dipole anisotropy (which they use for all their quoted results) is pathological

when modeling an isotropic universe (with no dipole). As the C19 dipole falls off exponentially with redshift, a

model with no observable dipole can be made either by setting the dipole term to zero, or by setting the dipole

term to any positive or negative value and the scale factor of the exponential to a value much smaller than the

SN redshifts. We find that we must restrict the range of S around the best-fit range found by C19 to achieve

reasonable frequentist coverage (e.g., 68% of the time, the true answer is in the 68% credible interval). This

difference could be the source of the non-Gaussian behavior of their contours as the dipole approaches zero (their

Figure 3), a feature that we do not see in our analysis.

Our response is structured as follows. Section 2 discusses our version of the C19 analysis, based heavily on the work

of RH16. Section 3 shows our cosmological constraints. We run analyses with heliocentric redshifts, CMB-centric

redshifts, and CMB-centric redshifts with the peculiar-velocity model JLA used (Hudson et al. 2004; Conley et al.

2011) removed. We further investigate the impact of the peculiar-velocity covariances that C19 removed. Section 4

summarizes and concludes.

2. ANALYSIS AND REANALYSIS

This section begins by reviewing kinematic parameters and outlining the C19 cosmological model (Section 2.1).

Section 2.2 describes our implementation of the analysis. Finally, Section 2.3 discusses the importance of allowing

the observed SN population distributions (after selection) to change with redshift, and dismantles the C19 claim that

constant population distributions are preferred.

2.1. Kinematic Parameters

The origin of the kinematic parameters is a series expansion of the scale factor a(t) around the present time t = t0:

a(t) = a0

[
1 +H0(t− t0)− 1

2!
q0H

2
0 (t− t0)2 +

1

3!
j0H

3
0 (t− t0)3 +O([t− t0]4)

]
. (1)

a0 is frequently defined to be 1. H0 is the Hubble constant (or the Hubble parameter evaluated at t = t0), given by

H0 ≡
ȧ(t)

a(t)
|t=t0 . (2)
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q0 is the deceleration parameter and is given by

q0 ≡ −
ä(t)a(t)

ȧ2(t)
|t=t0 ; (3)

the negative sign is a historical convention from when the expansion of the universe was assumed to be decelerating,

making ä(t) negative. j0 is the jerk parameter and is given by

j0 ≡
a···(t)a2(t)

ȧ3(t)
|t=t0 . (4)

C19 follows Visser (2004) in using the following series expansion for luminosity distance

dL(z) =
cz

H0

[
1 +

1

2
(1− q0)z − 1

6
(1− q0 − 3q20 + j0 − Ωk)z2

]
. (5)

As dL = (1+zheliocentric) times comoving distance, we slightly modify this expression so that it scales as (1+zheliocentric):

dL(z, zheliocentric) =
1 + zheliocentric

1 + z

cz

H0

[
1 +

1

2
(1− q0)z − 1

6
(1− q0 − 3q20 + j0 − Ωk)z2

]
, (6)

where z is heliocentric, CMB-centric, or CMB-centric with peculiar-velocity corrections. We form the distance modulus

as

µ(z, zheliocentric) = 5 log10

[
dL(z, zheliocentric)

10 parsec

]
. (7)

The C19 model separates q0 into a monopole q0m and a dipole q0d which C19 points in the direction of the CMB

dipole (~nCMB) in the their baseline analysis.

q0(zSN, ~nSN) = q0m + q0d(~nSN · ~nCMB) e−zSN/S (8)

S is the scale (in redshift) over which the dipole term falls off.

2.2. Parameter Inference

As noted above, much of our analysis follows RH16, including implemeting the model in Stan (Carpenter et al.

2017) with Pystan (https://doi.org/10.5281/zenodo.598257). We use 40 chains, each of which draws 1,000 samples

after 1,000 discarded burn-in samples. We publish our code as an update to the original RH16 analysis.1 We (and

C19) use a simple Bayesian hierarchical model for linear standardization of SNe Ia (c.f., Gull 1989; March et al. 2011).

We treat all parameters in a Bayesian framework, while C19 uses frequentist statistics for the cosmological parameters

(and other global parameters). The posteriors on these parameters are relatively Gaussian, so this is not a significant

difference.

As discussed in Section 1, the model in Equation 8 has pathologies. A model with no dipole can either be made

by setting q0d to zero, or q0d to any positive or negative number with S made much smaller than the minimum SN

redshift (0.01). For ease of comparison to C19, we use their model for our results. To ensure good frequentist coverage

of our inference (especially on q0d, which is better constrained than S), we use simulated-data testing. We use the

actual coordinates and redshifts of the nearby SNe (z < 0.15) in JLA, and simulate data with q0d = 8 (as in C19) and

q0d = 0. Running many simulations, we find that we need to restrict S to give reasonable frequentist coverage for the

inference. We restrict S to the range 0.02–0.03, matching the range of S values from C19 when q0m, q0d, and S are

simultaneously inferred.

2.3. Population Distributions

To illustrate the necessity of modeling the changes in the observed light-curve-parameter distributions with redshift,

we simulate a very simple survey with just color and magnitude. The intrinsic color population is assumed to be

Gaussian with width 0.1 magnitudes and mean 0 (constant in redshift). We generate redshifts with P (z) ∝ z2

1 https://github.com/rubind/SimpleBayesJLA

https://doi.org/10.5281/zenodo.598257
https://github.com/rubind/SimpleBayesJLA
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Figure 1. Illustration of the interaction of observed light-curve-parameter distributions and selection effects. We run a simple
simulated survey containing only color and magnitude. This simulation assumes a distance modulus of 5 log10(redshift) and a
constant volumetric rate (P (z) ∝ z2), and is thus scale-invariant. In other words, both the redshift/distance are in arbitrary
units, and the magnitudes are only defined up to an additive constant. The top panel shows magnitude plotted against true
distance (or redshift); the detected SNe (brighter than a cutoff magnitude) are plotted from blue to red according to their color.
The SNe fainter than the cutoff magnitude are shown in light gray. This plot shows that magnitude correlates with both color
and distance, and thus bluer SNe can be seen to much greater distances than redder SNe. The middle panel shows average
color of detected simulated SNe in bins. A clear trend towards detecting bluer SNe with greater distance is seen. The bottom
panel shows binned color vs. redshift for the real SNLS survey (see also RH16 Figure 1). The trend is qualitatively similar
but quantitatively different (as a number of real-world effects were ignored in this simple simulation). This simple simulation
shows that there is a strong expectation that the average color of detected SNe should vary significantly with redshift for
magnitude-limited samples, even in the case where SNe have the same intrinsic population distribution at all redshifts.
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(following a constant volumetric rate), then construct magnitudes using 5 log10(distance) + 3.1 color + arbitrary

constant, assuming distance ∝ redshift. For illustrative purposes, we apply a hard magnitude limit, in contrast to

actual selection probabilities, which are smooth with magnitude (e.g., Perrett et al. 2010). Figure 1 shows the results

of this simulation and qualitative agreement with the actual color trend with redshift in the SuperNova Legacy Survey

in the JLA analysis.

RH16 introduced 12 additional parameters: for the nearby SNe, the Sloan Digital Sky Survey SNe, and the SuperNova

Legacy Survey SNe, mean color and light-curve shape (after selection) are modeled as linear functions in redshift. Of

course, the averages are not quite linear with redshift, but this is close enough over most of the redshift range of most

of the SNe in each survey that more redshift-flexible models do not significantly change the cosmological inference

(as noted in RH16).2 C19 criticize the inclusion of these 12 additional parameters on three grounds, all of which are

demonstrably false.

C19 claims that the additional fit parameters are a posteriori, in other words that these parameters were deliberately

added by RH16 to the N16 analysis to recover the concordance cosmology. However, the importance of redshift-

dependent color population distributions was well established much earlier than the N16 paper, e.g. in Wood-Vasey

et al. (2007); Kessler et al. (2009); Karpenka (2015); Rubin et al. (2015). The intrinsic light-curve shape population

distribution is expected to be redshift-dependent as well, as there is a correlation between light-curve shape and

host-galaxy properties (Hamuy et al. 1995).

C19 further claims that the additional parameters are not justified by the Bayesian information criterion (Schwarz

1978), a frequently used method that penalizes −2 log(likelihood) with k log(n) for k parameters and n observations.

As discussed above, we have a strong expectation that the observed light-curve population distributions should be

redshift dependent, negating this objection to the 12 additional parameters of RH16 even if these parameters were not

favored by the Bayesian information criterion. The C19 implementation of the RH16 model gives a −2 log(likelihood)

that ranges from −298 to −332, depending on other fit parameters. The C19 constant-populations-in-redshift model

gives a −2 log(likelihood) that ranges from −190 to −217. The Bayesian information criterion relative penalty for 740

measurements (as there are 740 SNe in the JLA compilation) and 12 additional parameters is 12 log(740) = 79, much

less than the −2 log(likelihood) difference. Thus C19’s own values show that the RH16 model is actually preferred

using the information criterion that C19 claims to be using.

Finally, C19 criticizes RH16 for focusing on the light-curve shape and color parameters to the exclusion of magnitude.

This claim is also false, as described in RH16. As part of the JLA analysis, Betoule et al. (2014) included simulations of

the impact of selection effects on each SN sample, removed its impact on magnitude, and propagated the uncertainties

into the covariance matrix (much of this work was built on Conley et al. 2011). This bias is different from the deficient

standardization that one gets from ignoring the redshift dependence of the population distributions, which is due

to biasing the inferred latent values of light-curve shape and color. Intrinsic magnitude differences with redshift are

controlled for by matching SNe in bins of host-galaxy stellar mass (as an easier-to-measure proxy for SN progenitor

age or metallicity). In any case, the systematic uncertainties due to such effects are a small fraction of the signature of

acceleration in the SN Ia data, and a fraction of the bias caused by ignoring the redshift dependence of the population

distributions.

3. COSMOLOGICAL CONSTRAINTS

Figure 2 shows the 68.3% credible regions and intervals for the cosmological parameters. This figure shows con-

straints for three cases: heliocentric redshifts, CMB-centric redshifts, and CMB-centric redshifts with peculiar-velocity

corrections. To match C19, we remove the peculiar-velocity covariances from the JLA covariance matrix. We see

that the choice of redshift frame mostly affects q0d. Figure 3 shows the same cosmological constraints with the JLA

peculiar-velocity covariance matrix included. In contrast to the results without this part of the covariance matrix, q0d
is consistent with zero at 2σ for all three types of redshifts.

It is worth briefly discussing the interpretation of series expansions (kinematic expansions) of the expansion history

(Equation 1) to understand the strong correlation between q0 and j0 − Ωk. Frequently, we speak imprecisely about

measuring H0, q0, or j0 from SNe Ia (possibly combined with other probes). However, SNe measure distances at finite

redshift and thus effectively measure these quantities at nonzero (but low) redshift. For example, the (statistically

disfavored) not-currently-accelerating (q0 forced to 0) models of C19 (in Table A.1) have j0 − Ωk ∼ −1.35, and so

2 An even better approach is to model both the selection process and the intrinsic population distribution as a function of SN sample and/or
redshift. This can be done either as a simultaneous Bayesian model (Rubin et al. 2015) or with simulations (Scolnic & Kessler 2016).
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Figure 2. 68.3% credible regions and intervals for cosmological parameters. We show the results from the C19 assumptions
(heliocentric redshifts, no peculiar-velocity-uncertainty covariances, and redshift-independent observed light-curve population
distributions) in red. For our assumptions, we use all three considered redshifts: heliocentric (green), CMB-centric (blue), and
CMB-centric with peculiar-velocity corrections (black), all of which have the RH16 redshift-dependent population model. We
remove the peculiar-velocity covariances from the JLA covariance matrix to match C19. The cosmological parameter impacted
the most by the redshift variants is q0d. In particular, we see moderate evidence for a non-zero q0d dipole when heliocentric
redshifts are used, but this evidence drops to < 2σ for the other redshifts. The results using C19 assumptions are significantly
offset due to their population model.
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Figure 3. 68.3% credible regions and intervals for cosmological parameters. We show the results from the C19 assumptions
(heliocentric redshifts, no peculiar-velocity-uncertainty covariances, and redshift-independent observed light-curve population
distributions) in red. For our assumptions, we use all three considered redshifts: heliocentric (green), CMB-centric (blue), and
CMB-centric with peculiar-velocity corrections (black), all of which have the RH16 redshift-dependent population model. Unlike
Figure 2, the peculiar-velocity-uncertainty covariances are included, as they were in the JLA analysis. In contrast to the results
without the peculiar-velocity covariances, all of our cosmological results are consistent, with only a modest difference in q0d.
The results using C19 assumptions are again significantly offset.
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would have experienced several Gyrs of acceleration in the recent past (j0 < 0), even though the acceleration goes to

zero today. See RH16 for a discussion of q0/j0 − Ωk JLA constraints using other (physical) models.

4. CONCLUSION

This work reimplements the C19 cosmological analysis to investigate their claims of a dipole term in the deceleration

parameter (q0d) and a statistically weak monopole (q0m).

We show that the weak monopole finding is identical to the finding from the related N16 analysis, which was rebutted

by RH16 for their incorrect use of constant-in-redshift SN populations (after selection). We find the same criticism

still applies, and counter the C19 arguments against RH16, including finding an apparent miscalculation in the C19

Bayesian information criterion.

We find that the C19 (3.9σ) result of a significant q0d depends strongly on both failing to remove our motion from the

redshifts of SNe (that is, working in the heliocentric frame) and failing to include the JLA peculiar-velocity covariances.

Changing either of these brings the evidence for a dipole below 2σ. Despite the inclusion of the dipole term, we see

virtually the same constraints on q0m as RH16 saw on q0 when using the same type of redshift model and using the

same covariance matrix. We thus conclude that concerns over the value of q0d have little effect on the strength of the

evidence for acceleration.
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