Erasure of Defects

Juan Sebastian Valbuena Bermudez LMU-TUM Munich, Germany

Supervisor: Prof. Dr. Georgi Dvali

MPP PhD Recruiting Workshop 3rd December 2019

Outline

- GUTs and the Cosmological Monopole Problem Sweeping Away the Monopole Problem
- Reference and the end of the end
- \curvearrowright The ϕ^6 -Model
 - R Domain Walls, and Coulomb Vacuum Layers
 - R Vortex Lines
 - Reasure of Vortexes by Coulomb Vacuum Layers
- R Conclusions and Outlook

Grand Unified Theories

- \bigcirc In GUT, the three SM gauge interactions are merged into one-gauge interaction, *G*.
- \bigcirc *G* is spontaneously broken at *T_{GUT}* ∼ 10¹⁵GeV, to the SM group when a Higgs-like field, *φ*, acquires a VEV.
- G If $T > T_{GUT}$, in the very early universe there was a GUT-epoch

The Cosmological Monopole Problem

- As the universe expands and cools down, it undergoes a phase transitions at T_{GUT} .
- Ouring this phase transition different *topological defects* may be produced. For example:
 - R Domain Walls
 - R Cosmic Strings
 - R Magnetic Monopoles

The Cosmological Monopole Problem

- Monopole configurations are a common feature of GUTs.
- The estimated concentration of monopoles is unacceptably large in comparison to observations¹.
- - Inflation

 A. H. Guth, Phys. Rev. D 23, 347 (1981)
 - CR Langacker & Pi mechanism P. Langacker and S.Y. Pi, Phys. Rev. Lett. 45, 1 (1980)
 - Rev. Lett. 75, 4559 (1995)

¹Y. Zeldovich and M. Khlopov, Phys. Lett. B79, 239–241 (1978) J. Preskill, Phys. Rev. Lett.43, 1365 (1979)

Sweeping Away the Monopole Problem

Domain Walls + Magnetic Monopoles interaction → Erasure of Monopoles

Real Basic idea:

- R The same phase transition produces
 - **Magnetic Monopoles**
- The domain walls move through space and sweep up the monopoles.
- R When a monopole encounters a wall, it *unwinds* and *dissipates*.
- The walls are unstable at a lower energy scale, and hence collapse and go away.

³G. Dvali, H. Liu, and T. Vachaspati, Phys. Rev. Lett. 80, 2281–2284 (1998).

Erasure of Defects: The DLV Mechanism

Erasure of a Vortex by a Coulomb Vacuum Layer

The ϕ^6 -Model

$$\mathcal{L}[\phi, A_{\mu}] = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^* D^{\mu}\phi - V(\phi),$$

G = U(1)

$$V(\phi) = \lambda^2 \phi \phi^* (\phi \phi^* - \nu^2)^2.$$

	Coulomb Phase: $\langle \phi \rangle = 0$	Higgs Phase: $\langle \phi \rangle = v$
Vacuum Manifold	$\mathcal{M}_{\rm C} = G/H_0 = 1$	$\mathcal{M}_{\rm H} = G/H_{\nu} = U(1)$
Spectrum	$m_{\phi} = \lambda \nu^2$	$m_h = 2\lambda\nu^2$
	$m_A = 0$	$m_v = \sqrt{2}e\nu$

Domain Walls in the ϕ^6 -Model

Domain Walls in the ϕ^6 -Model

- \mathfrak{R} $\pi_0(\mathcal{M}) = \mathbb{Z}_2$
- \propto (1+1)-dimensions
- Solitonic configurations interpolating between the Coulomb and the Higgs phases⁴

$$\phi_{(\pm\nu,0)}(x) \equiv \pm\nu\sqrt{\frac{1}{1+e^{m_hx}}}$$
$$\phi_{(0,\pm\nu)}(x) \equiv \pm\nu\sqrt{\frac{1}{1+e^{-m_hx}}}$$

 $\phi_{(0,\nu)}(x)$

⁴V. A. Gani, A. E. Kudryavtsev, and M. A. Lizunov, Phys. Rev. D 89, 125009,(2014)

Coulomb Vacuum Layer

 $(\nu, 0, \nu)$ -Domain Wall

R Profile ansatz

$$\phi_{(\nu,0,\nu)}(x) = \phi_{(\nu,0)}\left(x + \frac{l}{2}\right) + \phi_{(0,\nu)}\left(x - \frac{l}{2}\right)$$

CR Distance between the walls:

$$l > m_h^{-1}$$

Time Evolution: $(\nu, 0, \nu)$ -Domain Wall

 $l = 15m_h^{-1}$

Time Evolution: $(\nu, 0, \nu)$ -Domain Wall.

 $l = 40m_h^{-1}$

Vortex Profile

- $\mathfrak{R} \pi_1(\mathcal{M}_{\mathrm{H}}) = \mathbb{Z}$
- R In (2+1) dimensions
- \sim Ansatz⁴

$$\phi(r,\theta) = \nu e^{in\theta} F(r)$$
$$A_i(r,\theta) = -\frac{n}{er} \epsilon_{ij} n_j A(r)$$

where $n \in \mathbb{Z}$ is the *winding number.*

⁴H.B. Nielsen, P. Olesen, Nuc. Phys. B, Vol. 61, 45-61, (1973)

Vortex: ϕ

$$m_h = 1$$

$$m_v = 1$$

- $\alpha n = 1$
- Scalar Field:

 $\phi(r,\theta) = \nu e^{in\theta} F(r)$

Vortex: ϕ

$$m_h = 1$$

$$m_v = 1$$

$$m_v = 1$$

Scalar Field:

$$\phi(r,\theta) = \nu e^{in\theta} F(r)$$
$$\alpha n = \frac{1}{2\pi i \nu^2} \oint dx^i \phi^* \partial_i \phi$$

Vortex: *A_i*

$$call m_h = 1$$

- $m_v = 1$
- n = 1
- Gauge Field:

$$A_i(r,\theta) = -\frac{n}{er} \epsilon_{ij} n_j A(r)$$

$$\propto n = \frac{e}{2\pi} \int B d^2 x$$

Erasure of a Vortex by a Coulomb Vacuum Layer

Initial Conditions $\phi(x, y)$

x

Initial Conditions Arg($\phi(x, y)$)

Initial Conditions $A_i(x, y) \& B(x, y)$

Time Evoultion $|\phi(x, y)|$

Time Evoultion $Arg(\phi(x, y))$

Time Evoultion $Arg(\phi(x, y))$

Time Evoltion $\phi(x, y)$

Time Evoltion $\phi(x, y)$

Time Evoultion $A_{\mu}(x,y)$

x

Time Evoltion B(x, y)

Time Evoultion

n

Time Evoultion: Energy Density

Time Evoultion: EM Energy Density

Conclusions and Outlook

- \curvearrowright Dvali-Liu-Vachaspati mechanism is borne out in the ϕ^6 -model.
- None of the studied regimes presented a case in which the vortex survive.
- This mechanism can be generalized to other models, and higher dimensions.
- Further evidence for this mechanism includes Interactions between
 - Monopoles and Domain Walls,
 - Skyrmions and Domain Walls,
 - \sim Vortices and Domain Walls in ³He
- The DLV mechanism suggests that interactions of topological defects lead to the erasure of defects.

Thank You

 $l = 15m_h^{-1}$

 $m_h < m_v$

 $m_h > m_v$

 $m_h > m_v$

 $m_h > m_v$

Topological Defects in the ϕ^6 -Model

 \curvearrowright The topology of the vacuum manifold \mathcal{M} determines the spectrum of defects of the model.

Domain Walls:

$$\pi_0(\mathcal{M}) = \mathbb{Z}_2$$
$$\pi_1(\mathcal{M}_{\mathbf{C}}) = 0$$

Vortex Lines:

 $\pi_n(\mathcal{M}_{\mathrm{C}}) = 0, \ n \ge 2$ $\pi_n(\mathcal{M}_{\mathrm{H}}) = 0, \ n \ge 2$

 $\pi_1(\mathcal{M}_{\mathrm{H}}) = \mathbb{Z}_2$

Domain Walls in the ϕ^6 -Model

- \propto (1+1)-dimensions
- Constraining the field ϕ to be a real field: $\phi = \frac{\chi}{\sqrt{2}}$ $\mathcal{L}_{DW} = \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \lambda^2 \frac{\chi^2}{2} \left(\frac{\chi^2}{2} - \nu^2\right)^2.$
- Domain walls are solitonic configurations of $\chi(x)$, with the following asymptotic behavior

$$\lim_{x \to -\infty} \chi(x) = 0$$
$$\lim_{x \to \infty} \chi(x) = \pm \sqrt{2\nu}$$

∝ In (2+1) dimensions

 \bigcirc Asymptotic Field Configuration as *r* → ∞

$$\phi \to \nu e^{ig(\theta)} = \nu e^{in\theta}$$

$$A_i \to \frac{1}{e} \partial_i g(\theta) = -\frac{n}{er} \epsilon_{ij} n_j$$

where $n \in \mathbb{Z}$ is the *winding number*.

Ansatz⁴ for Vortex Profile

$$\phi(r,\theta) = \nu e^{in\theta} F(r)$$
$$A_i(r,\theta) = -\frac{n}{er} \epsilon_{ij} n_j A(r)$$

R The field equations

$$\Box \phi + \frac{\partial V(\phi)}{\partial \phi^*} = 0,$$
$$\partial_{\mu} F^{\mu\nu} = j^{\nu},$$

⁴H.B. Nielsen, P. Olesen, Nuc. Phys. B, Vol. 61, 45-61, (1973)

A The field equations become:

$$0 = -rF''(r) - F'(r) + \frac{(1 - A(r))^2}{r}n^2F(r) + \frac{m_h^2}{4}rF(r)\left(F(r)^2 - 1\right)\left(3F(r)^2 - 1\right)$$

$$0 = -\frac{A''(r)}{r} + \frac{A'(r)}{r^2} - \frac{m_v^2}{r}(1 - A(r))F(r)^2$$