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• People involved:
− Stephan Paul
− Martin Losekamm
− Thomas Pöschl

• The detector:
− Monitor radiation environment in outer space

• High rates
• Omnidirectional flux

• The goal:
− Online reconstruction of particles’ parameters

from raw detector data:
• Track parameters (direction)
• Energy
• Particle species

• The method:
− Artificial Neural Networks (ANNs)
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Radiation Monitor: MAPT

𝜑
𝜃

Multi-purpose Active-target Particle Telescope
(MAPT):

• Segmented calorimeter
− Omnidirectional acceptance
− 32 Layers

• Layer:
− 32 fibers
− Rotated by 90° w.r.t. the previous layer
− Shifted horizontally w.r.t. previous layer of

equal orientation
• Fiber:
− Active Core:

• Polystyrene
• 1.92mm×1.92mm×70mm

− Sputtered with aluminium
• Signal:
− Two orthogonal projections of the track

32 fibers

32
lay

er
s
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Radiation Monitor: Signal

𝜑
𝜃

• Particle deposits energy in
active material along its
path

• Active material converts
energy to photons

• Photons collected by SiPMs
⇒ electrical signal
proportional to energy
deposit (non-linear effects!)
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Traditional Method: Hough Transform
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• Standard line-detection method
in computer vision: fast and
robust

• Maps every pixel of the input
image to one sinusoid in the
Hough space

• Iff sinusoids meet at one point,
the pixels lie on one straight line
in the input image

• In Hough space: line detection by
peak finding

Hough Transform
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Method: ANN

• Powerful pattern-recognition algorithm
• Implementation of a (non-linear) function

parametrized by a set of weights
• Practical usage: weights can be adjusted

efficiently via optimization ⇒ Supervised Learning
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layer
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• Examples:
− Online translation services,
− snapchat filters,
− speech recognition

• Structure:
− Neurons form layer
− Layers form networks

• Different types of architecture:
− CNNs (Convolution),
− RNNs (Recurrent ⇒ information loops),
− mixtures
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ANN: Training

Input 𝐱
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Supervised Learning:
• Given: Labeled data point (𝑥,𝑦)
• ANN makes prediction
• Loss function compares prediction ̂𝑦 to target 𝑦
• Weights adapted via gradient descent to minimize

loss
• Important: Sufficient amount of labeled data

points!
In our case:

• Input 𝑥 given by the two projections:
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• For e.g. energy reconstruction:
− Target 𝑦 = 𝐸𝑡𝑟𝑢𝑒
− Prediction ̂𝑦 = 𝐸𝑟𝑒𝑐𝑜
− Loss function 𝐿 ∝ 𝐸𝑡𝑟𝑢𝑒 −𝐸𝑟𝑒𝑐𝑜
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Supervised Learning with Simulated Data

• Idea:
− Use GEANT4 to simulate training data (truth known, unlimited labeled data!)
− Later: validate on beam-test data

• Data set:
− 6.7 million events
− Particle: proton
− Energy: 30 MeV to 100 MeV
− Angle distribution: omnidirectional
− Ionization quenching added
− Reject events with less than two hits per plane (line defined by two points)
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Track Reconstruction: Results
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• Spatial reconstruction:
− comparable results from Hough

and ANN
• Angle reconstruction:
− Factor two difference in 68 %

Central Interval
• ANN can capture correlations between

projections and
• use energy-deposit information
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Spherical Coordinates:
68 %-CIHough,𝜃 = 3.29deg , 68 %-CIHough,𝜑 = 6.88deg ,
68 %-CIANN,𝜃 = 1.58deg , and 68 %-CIANN,𝜑 = 3.00deg .
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Hough Optimization
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• Raw:
− Artefacts

• Up-scaled image:
− Few artefacts
− Computationally expensive

• Gaussian Filter:
− Few artefacts
− Computationally cheap
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PSI Beam Test
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• At Paul Scherrer Institute (𝜋M1 beam line)
• Pion beam (450 MeV/c0)
• Prototype module of the detector (8 layers à 32

fibers)
• Mounted on rotary table
• Upstream trigger cross

8 layers
32

fib
er

s
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PSI Beam Test
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• Crosstalk not included in
simulation

⇒ ANN strongly relies on
‘neighboring pixel pattern’

• Hough transform: intrinsically
robust

⇒ Build more realistic simulation
and repeat
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Detection of Stopped Particles in MAPT
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Figure: ROC curve. Random classifier: diagonal, perfect classifier: top left corner.

• Boosted decision tree
(‘XGBoost’) combines
handcrafted features:
− path-length difference
− number of fiberhits
− mean energy deposit
− maximal energy deposit

• ANN:
− raw detector images as input
− self-learned features
− CNN based on LeNet-5
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Energy Reconstruction
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• Consider stopped and unstopped
events seperately

• Validate at discrete energies:
40 MeV to 90 MeV in steps of
10 MeV

• Preliminary result:
− Boundary effects
− Spikes
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Final Slide

Thanks for your attention!
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Quark Production at B Factories

e− e+

X
�c

X ̄c Xc

, where
Xc: open charm hadron
X ̄c: open anti-charm hadron
X
�c: charmless particles (‘fragmentation’)

Quark production:
• e+e− ⟶ BB̄
• e+e− ⟶ q ̄q, where q = u, d, s
• e+e− ⟶ c ̄c ⟶ XcX ̄cX�c
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Typical Charm Analysis

D𝜋,𝛾, ...

e− e+

X
�c

X ̄c Xc

Typical charm analysis:
• just reconstruct D, ignore Rest Of Event (ROE)!

⇒ large combinatorial background
• suppress using vertex fitting
− in case of no or few charged particles ⇒ not

viable
− in case of multiple 𝜋0s ⇒ not viable

• solution: use information from ROE ⇒ Charm
Tagger
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Charm Tagger

D𝜋,𝛾, ...

e− e+

X
�c

X ̄c Xc

Charm Tagger:
• use information from Rest Of Event (ROE) ⇒

suppress background

Algorithm:
• given particle of interest D ⇒ find ROE
• from ROE identify X ̄c, X

�c and (Xc) = 𝜋,𝛾, ...
• full event must obey conservation of quantum

numbers:
− charge
− strangeness
− baryon number

• momentum conservation:
𝑃D

𝑅𝑂𝐸 = 𝑃e+ +𝑃e− −𝑃ROE
• compare 𝑃D

𝑅𝑂𝐸 to 𝑃D
reco reconstructed from

decay products of D
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Final Slide

Thanks for your attention!
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Applications

Figure: 𝑀D0 distribution of inclusive D0 sample. Taken from third
paper below.

Charm tagging algorithm:
• useful for many analyses (examples below)
• high signal to background ratio
• clean sample

Similiar techniques employed at Belle:
• Measurements of branching fractions of leptonic and hadronic D+

s meson decays and extraction of the D+
s meson decay

constant, A.Zupanc et al., 2013
• Search for the rare decay D0 ⟶ 𝛾𝛾 at Belle, NK Nisar et al., 2016
• Search for D0 decays to invisible final states at Belle, Y.-T. Lai et al., 2017
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Data-Science Challenges

Gaols:
• improve signal to background
• increase efficiency (so far order of 0.1 %)

⇒ Use Neural Networks!

Main Data-Science challenges:
• e+e− ⟶ XcX ̄cX�c not well measured
⇒ maybe can’t fully trust simulated data
⇒ may need algorithm that adapts to

experimental data
• Uncertainties on training sample lables
• preprocessing of Machine Learning input data (cf.

next slide)
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Machine Learning Input Data

Low level:
• Input: charged tracks, neutral clusters

+ all correlations intact
+ no prior interpretation of data

− large number of inputs

High level:
• Input: reconstructed particles (apply PID cuts,

group tracks to composite particles)
⇒ input of extra knowledge

− might lose correlations
+ interpretation might be hard to learn from low

level
+ smaller number of inputs

Combine low and high level information?
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The Challenge

● The givens:
– The response of the Multi-purpose 

Active-target Particle Telescope 
(MAPT) to an incoming particle

●  The goal:
– Online reconstruction of the 

particle´s parameters
● Track,
● Energy,
● Type, ...

● The method:
– Artificial Neural Networks (ANNs)

(Rendered by 
M. Losekamm)
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Outline

● Radiation Monitor:
– Multi-purpose Active-target Particle Telescope (MAPT)

● Pattern-Recognition Methods:
– Hough Transform

– Artificial Neural Networks (ANNs)

● Central Results:
– Simulated Data

– Beam-Test Data

● Future Work
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Radiation Monitor
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Radiation Monitor: MAPT

● Segmented calorimeter
– 32 layers (2018 Design)

– Omnidirectional acceptance

● Layer:
– 32 fibers

– Rotated by 90° w.r.t. previous layer

– Shifted horizontally w.r.t previous layer of 
equal orientation (2018 Design)

● Fiber:
– Active core: 

● Polystyrene
● 1.92mm x 1.92mm x 70mm 

– Sputtered with aluminium

● Signal: Two orthogonal projections of the 
track

32
 la

ye
rs

32 fibers
(Rendered by 
M. Losekamm)

particle
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Radiation Monitor: Signal

● Particle deposits energy 
in the active material 
along its path

● Active material converts 
energy to photons

● Photons collected by 
SiPMs → electronical 
signal proportional to 
energy deposit (non-
linear effects!)

YX
YZ



Lukas Bierwirth Development of a Neural Network for Online 
Event Reconstruction for a Radiation Monitor

7

Pattern-Recognition Methods
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Methods: Hough Transform

● Standard line detection method in 
computer vision: fast, robust

● Maps every pixel of the input image to 
one sinusoid in the Hough space

● Iff sinusoids meet at one point, the 
pixels lie on one line in the input 
image

● In Hough space: line detection by 
peak finding

HT
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Methods: ANNs

● Powerful pattern-
recognition algorithm

● Implementation of a 
(nonlinear) function 
parameterized by a set of 
weights

● Practical usage: weights 
can be adjusted 
efficiently via optimization 
→ Supervised Learning

● Examples: 
– Online translation services, 
– snapchat filter,
– speech recognition

● Structure:
– Neurons form layers

– Layers form networks

● Different types of architecture: 
– CNNs (Convolution), 

– RNNs (Recurrent→ information 
loops),

– mixtures
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Methods: ANNs: Example

● Layers:

– Blue: In- and Output

– Red: Convolution

– Green: MaxPooling 
(Take maximum value 
of certain window) 

– Yellow: Dense Layers 
(Neurons connected to 
every neuron of 
previous layer)

– White: Reshaping

● Task: Track 
Reconstruction
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Methods: ANNs: Training

● Supervised learning:
– Given: labeled data point 

(x,y)

– ANN makes prediction

– Loss function compares 
prediction to target

– Weights adapted via 
gradient descent to 
minimize loss

– Important: Sufficient amount 
of labeled data points!
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Simulated Data
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Simulation: Data Set

● Idea: 
– Use GEANT4 to simulate training data (truth known, unlimited labeled 

data!)

– Later: validate on beam-test data

● Data set:
– 6.7 million events

– Particle: proton 

– Energy: 30 to 100 MeV (flat distribution)

– Angle distribution: omnidirectional

– Ionization quenching added 

– Exclude events with less than two hits per plane (line defined by two points)
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Stop Detection:
Has the particle stopped in the detector?
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Stop Detection: Methods

● Non-Machine Learning:

– Handcrafted feature

– Based on Hough transform

– Idea:
● Use reconstructed line to check 

how many fibers would be hit if the 
particle was unstopped --> "path-
lenght difference“

● Compare to actual number of hits

– Improvement: Look for Bragg 

peak --> Decision tree (ML!)  

● ANN:
– Self-learned features
– CNN architecture based on 

LeNet-5

– Relies (supposedly) on energy-
deposition characteristics as 
well as the track geometry

(Figure taken from Wikipedia)
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Stop Detection: Binary Classification

● Accuracy
● Sensitivity or True Positive Rate 

– how good a test is at detecting the positives. A test can cheat and maximize 
this by always returning “positive”.

● Specificity or True Negative Rate
– how good a test is at avoiding false alarms. A test can cheat and maximize 

this by always returning “negative”.

● Precision or Positive Predictive Value
– how many of the positively classified were relevant. A test can cheat and 

maximize this by only returning positive on one result it’s most confident in.

● F1-Score
– Combines Recall and Precision into one quantity

TP
TP+FN

TN
TN +FP

TP
TP+FP

2
1

Recall
+

1
Precision

TP+TN
TP+FP+TN+FN
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Stop Detection: Results

● ANN: Close to perfect score (=1)
● “Hough + XGBoost”: path-length difference (slow!), fiber hits, mean and 

maximum energy deposit → Bragg peak
● “XGBoost”: same inputs, except no path-length difference, i.e. only Bragg 

peak
● “Hough”: non-Machine Learning algorithm  
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Stop Detection: ROC curve

● Diagonal: 
random 
classifier

● Perfect result: 
top left corner
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A Side Note

0 1 2 3 4 5 6 7 8 9 10

Development Time

Hough
ANN

Time spent [a.u.]

● Handcrafted 
features: time 
expensive to 
develop!
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Track Reconstruction
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Simulation: Track Reconstruction: Methods

● Hough Transform
– Output per projection:

● angle
● distance from origin

– From 2-D to 3-D: math

● ANN
– Sampe output as HT

– Architecture inspired by 
Google‘s Inception Net

– Can use energy-
deposit information

– Can capture 
correlations between 
projections
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Track Reconstruction: Performance Measure

● Angle: ● Location (parallel lines):
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Track Reconstruction: Results

● Location extraction 
comparable

● Difference of factor 
two in 68%-Central 
Interval for angle 
reconstruction

Spherical Coordinates:
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Track Reconstruction: Optimizing Hough

● Raw:

– Noisey

● Up-scaled image:

– Low noise

– Computationally 
expensive

● Gaussian Filter:

– Low noise

– Computationally 
cheap
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Energy Reconstruction
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Energy Reconstruction

● Consider stopped and unstopped events 
seperately:
– Stopped: whole energy deposited --> summation 

(quenching!)

– Unstopped: Extrapolate Bragg curve

● No non-Machine Learning alternative developed 
as part of this work --> Compare different ANNs

● Preliminary Results!  
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Energy Reconstruction: CNN

● Validate at discrete 
energies: 40, 50, 
…, 90 MeV

● Boundary effects!

● Spikes!

● Unlikely events: 
stopped 90 MeV 
protons,...
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Energy Reconstruction

● Flat energy distribution → “Natural energy” distribution for 
stopped and unstopped protons

● CNN: unbiased, highest precision

● Long tail issue 
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PSI Beam Test
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PSI Beam Test: Set-up

● At Paul Scherrer Institute 
(November, 2018)

● Small prototype of the 
detector (total: 8 layers)

● Mounted on rotary table

● Upstream trigger cross

● Pion beam
8 layers

32 fiber s
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PSI Beam Test: Results

● Track rotation angle

● Dead channels!

15°

12.5°

10°

5°

0°

-5°

-10°

-12.5°

-15°
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PSI Beam Test: Generalization Problem

● Crosstalk not included 
in simulation → ANN 
strongly relies on 
„neighboring pixel 
pattern“ (cf. YZ-plane) 

● Hough Transform: 
intrinsically robust
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Future Work
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Future Work

● More thorough analysis of PSI data (energy 
calibration, add more processes to simulation)

● Port ANN to small chip → integrate into experimental 
setup

● Explore further ANN architectures

● Put the different parts (energy, track, ...) together to 
form an autoencoder → capture correlations between 
different parameters
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Thanks for your time and attention!


