

Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor

Lukas Bierwirth TU München Physics Department Munich, 3rd December 2019

Tur Uhrenturm

Motivation

Rendered by M. Losekamm

- People involved:
 - Stephan Paul
 - Martin Losekamm
 - Thomas Pöschl
- The detector:
 - Monitor radiation environment in outer space
 - High rates
 - Omnidirectional flux
- The goal:
 - Online reconstruction of particles' parameters from raw detector data:
 - Track parameters (direction)
 - Energy
 - Particle species
- The method:
 - Artificial Neural Networks (ANNs)

ПП

Radiation Monitor: MAPT

Multi-purpose Active-target Particle Telescope (MAPT):

- Segmented calorimeter
 - Omnidirectional acceptance
 - 32 Layers
- Layer:
 - 32 fibers
 - Rotated by 90° w.r.t. the previous layer
- Shifted horizontally w.r.t. previous layer of equal orientation
- Fiber:
 - Active Core:
 - Polystyrene
 - 1.92 mm × 1.92 mm × 70 mm
 - Sputtered with aluminium
- Signal:
 - Two orthogonal projections of the track

Radiation Monitor: Signal

- Particle deposits energy in active material along its path
- Active material converts energy to photons
- Photons collected by SiPMs
 ⇒ electrical signal
 proportional to energy
 deposit (non-linear effects!)

Traditional Method: Hough Transform

ТШ

Method: ANN

- Powerful pattern-recognition algorithm
- Implementation of a (non-linear) function parametrized by a set of weights
- Practical usage: weights can be adjusted efficiently via optimization ⇒ Supervised Learning

- Examples:
 - Online translation services,
 - snapchat filters,
 - speech recognition
- Structure:
 - Neurons form layer
 - Layers form networks
- Different types of architecture:
 - CNNs (Convolution),
 - RNNs (Recurrent \Rightarrow information loops),
 - mixtures

ТШТ

ANN: Training

Supervised Learning:

- Given: Labeled data point $(\boldsymbol{x},\boldsymbol{y})$
- ANN makes prediction
- Loss function compares prediction \hat{y} to target y
- Weights adapted via gradient descent to minimize loss
- Important: Sufficient amount of labeled data points!

In our case:

• Input x given by the two projections:

• For e.g. energy reconstruction:

$$-$$
 Target $y = E_{true}$

- Prediction $\hat{y}=E_{reco}$
- Loss function $L \propto E_{true} E_{reco}$

Supervised Learning with Simulated Data

- Idea:
 - Use GEANT4 to simulate training data (truth known, unlimited labeled data!)
 - Later: validate on beam-test data
- Data set:
 - 6.7 million events
 - Particle: proton
 - $-\,$ Energy: 30 MeV to 100 MeV
 - Angle distribution: omnidirectional
 - Ionization quenching added
 - Reject events with less than two hits per plane (line defined by two points)

Track Reconstruction: Results

Hough Optimization

ПΠ

PSI Beam Test

- At Paul Scherrer Institute (π M1 beam line)
- Pion beam (450 ${\rm MeV/c_0})$
- Prototype module of the detector (8 layers à 32 fibers)
- Mounted on rotary table
- Upstream trigger cross

ТШ

PSI Beam Test

- Crosstalk not included in simulation
 - ⇒ ANN strongly relies on 'neighboring pixel pattern'
- Hough transform: intrinsically robust
- \Rightarrow Build more realistic simulation and repeat

Detection of Stopped Particles in MAPT

Figure: ROC curve. Random classifier: diagonal, perfect classifier: top left corner.

ПΠ

Energy Reconstruction

- Consider stopped and unstopped events seperately
- Validate at discrete energies: 40 MeV to 90 MeV in steps of 10 MeV
- Preliminary result:
 - Boundary effects
 - Spikes

Final Slide

Thanks for your attention!

Quark Production at B Factories

Quark production:

- $e^+e^- \longrightarrow B\bar{B}$
- $e^+e^- \longrightarrow q\bar{q}$, where q = u, d, s

•
$$e^+e^- \longrightarrow c\bar{c} \longrightarrow X_c X_{\bar{c}} X_{\not{c}}$$

, where

- X_c : open charm hadron
- $X_{\overline{c}}$: open anti-charm hadron
- X_{e} : charmless particles ('fragmentation')

Typical Charm Analysis

Typical charm analysis:

- just reconstruct D, ignore Rest Of Event (ROE)!
 ⇒ large combinatorial background
- suppress using vertex fitting
 - in case of no or few charged particles \Rightarrow not viable
 - in case of multiple $\pi^0 s \Rightarrow not$ viable
- solution: use information from $\mbox{ROE} \Rightarrow \mbox{Charm}$ Tagger

ПΠ

Charm Tagger

Charm Tagger:

• use information from Rest Of Event (ROE) \Rightarrow suppress background

Algorithm:

- given particle of interest $\mathsf{D} \Rightarrow \mathsf{find}\ \mathsf{ROE}$
- from ROE identify $\mathsf{X}_{\bar{\mathsf{c}}},\,\mathsf{X}_{\not{\mathsf{c}}}$ and $(\mathsf{X}_{\mathsf{c}})=\pi,\gamma,\ldots$
- full event must obey conservation of quantum numbers:
 - charge
 - strangeness
 - baryon number
- momentum conservation: $P_{\rm D}{}^{ROE} = P_{\rm e^+} + P_{\rm e^-} P_{\rm ROE}$
- compare ${P_{\rm D}}^{ROE}$ to ${P_{\rm D}}^{\rm reco}$ reconstructed from decay products of D

Final Slide

Thanks for your attention!

Applications

Charm tagging algorithm:

- useful for many analyses (examples below)
- high signal to background ratio
- clean sample

Figure: $M_{\rm D^0}$ distribution of inclusive D⁰ sample. Taken from third paper below.

Similiar techniques employed at Belle:

- Measurements of branching fractions of leptonic and hadronic D^+_s meson decays and extraction of the D^+_s meson decay constant, A.Zupanc et al., 2013
- Search for the rare decay ${\rm D}_0 \longrightarrow \gamma \gamma$ at Belle, NK Nisar et al., 2016
- Search for D_0 decays to invisible final states at Belle, Y.-T. Lai et al., 2017

Data-Science Challenges

Gaols:

- improve signal to background
- increase efficiency (so far order of $0.1\,\%$)
- \Rightarrow Use Neural Networks!

Main Data-Science challenges:

- $e^+e^- \longrightarrow X_c X_{\bar c} X_{\not c}$ not well measured
- \Rightarrow maybe can't fully trust simulated data
- \Rightarrow may need algorithm that adapts to experimental data
- Uncertainties on training sample lables
- preprocessing of Machine Learning input data (cf. next slide)

Machine Learning Input Data

Low level:

- Input: charged tracks, neutral clusters
- + all correlations intact
- + no prior interpretation of data
- large number of inputs

High level:

- Input: reconstructed particles (apply PID cuts, group tracks to composite particles)
- \Rightarrow input of extra knowledge
- might lose correlations
- + interpretation might be hard to learn from low level
- + smaller number of inputs

Combine low and high level information?

Final Slide

Thanks for your attention!

Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor

(Master's Colloquium)

Lukas Bierwirth

Physics Department TU München

The Challenge

Lukas Bierwirth

• The givens:

- The response of the Multi-purpose Active-target Particle Telescope (MAPT) to an incoming particle
- The goal:
 - Online reconstruction of the particle's parameters
 - Track,
 - Energy,
 - Type, ...
- The method:
 - Artificial Neural Networks (ANNs)

Outline

- Radiation Monitor:
 - Multi-purpose Active-target Particle Telescope (MAPT)
- Pattern-Recognition Methods:
 - Hough Transform
 - Artificial Neural Networks (ANNs)
- Central Results:
 - Simulated Data
 - Beam-Test Data
- Future Work

Radiation Monitor: MAPT

- Segmented calorimeter
 - 32 layers (2018 Design)
 - Omnidirectional acceptance
- Layer:
 - 32 fibers
 - Rotated by 90° w.r.t. previous layer
 - Shifted horizontally w.r.t previous layer of equal orientation (2018 Design)
- Fiber:
 - Active core:
 - Polystyrene
 - 1.92mm x 1.92mm x 70mm
 - Sputtered with aluminium
- Signal: Two orthogonal projections of the track

Radiation Monitor: Signal

- Particle deposits energy in the active material along its path
- Active material converts energy to photons
- Photons collected by SiPMs → electronical signal proportional to energy deposit (nonlinear effects!)

Lukas Bierwirth

Methods: Hough Transform

- Standard line detection method in computer vision: fast, robust
- Maps every pixel of the input image to one sinusoid in the Hough space
- Iff sinusoids meet at one point, the pixels lie on one line in the input image
- In Hough space: line detection by peak finding

Algorithm 1 Hough transform

```
1: function HOUGH(image)
                               \sqrt{\text{width}_{\text{image}}^2 + \text{height}_{\text{image}}^2}
 2:
             \rho_{\rm max} \leftarrow
            \rho_{\min} \leftarrow -\rho_{\max}
accumulator\left[-\frac{\pi}{2} \dots \frac{\pi}{2}\right] \left[\rho_{\min} \dots \rho_{\max}\right] \leftarrow 0
  3:
  4:
             foreach pixel \neq 0 do
  5:
                    for \theta \leftarrow -\frac{\pi}{2} to \frac{\pi}{2} do
  6:
                           \rho \leftarrow \bar{[x_{\text{pixel}} \cos \theta + y_{\text{pixel}} \sin \theta]}
 7:
                           accumulator[\theta][\rho] \leftarrow accumulator[\theta][\rho] + 1
  8:
  9:
                    end for
             end foreach
10:
11:
             return accumulator
12: end function
```


Methods: ANNs

- Powerful patternrecognition algorithm
- Implementation of a (nonlinear) function parameterized by a set of weights
- Practical usage: weights can be adjusted efficiently via optimization
 → Supervised Learning

- Examples:
 - Online translation services,
 - snapchat filter,
 - speech recognition
- Structure:
 - Neurons form layers
 - Layers form networks
- Different types of architecture:
 - CNNs (Convolution),
 - RNNs (Recurrent → information loops),
 - mixtures

Methods: ANNs: Example

- Layers:
 - Blue: In- and Output
 - Red: Convolution
 - Green: MaxPooling (Take maximum value of certain window)
 - Yellow: Dense Layers (Neurons connected to every neuron of previous layer)
 - White: Reshaping
- Task: Track
 Reconstruction

Lukas Bierwirth

Methods: ANNs: Training

- Supervised learning:
 - Given: labeled data point (x,y)
 - ANN makes prediction
 - Loss function compares prediction to target
 - Weights adapted via gradient descent to minimize loss
 - Important: Sufficient amount of labeled data points!

Simulation: Data Set

- Idea:
 - Use GEANT4 to simulate training data (truth known, unlimited labeled data!)
 - Later: validate on beam-test data
- Data set:
 - 6.7 million events
 - Particle: proton
 - Energy: 30 to 100 MeV (flat distribution)
 - Angle distribution: omnidirectional
 - Ionization quenching added
 - Exclude events with less than two hits per plane (line defined by two points)

Stop Detection: Has the particle stopped in the detector?

Lukas Bierwirth

Stop Detection: Methods

- Non-Machine Learning:
 - Handcrafted feature
 - Based on Hough transform
 - Idea:
 - Use reconstructed line to check how many fibers would be hit if the particle was unstopped --> "pathlenght difference"
 - Compare to actual number of hits
 - Improvement: Look for Bragg peak --> Decision tree (ML!)

• ANN:

- Self-learned features
- CNN architecture based on LeNet-5
- Relies (supposedly) on energydeposition characteristics as well as the track geometry

Lukas Bierwirth

Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor YΖ

Concatenate

Conv2D (1)

MaxPool2D (1)

Conv2D (1)

MaxPool2D (2)

Conv2D (2)

MaxPool2D (2

Flatten

Dense (1)

Dense (3)

Ston Classificatio

- Accuracy $\frac{TP+TN}{TP+FP+TN+FN}$
- Sensitivity or True Positive Rate $\frac{TP}{TP+FN}$
 - how good a test is at detecting the positives. A test can cheat and maximize this by always returning "positive".
- Specificity or True Negative Rate $\frac{TN}{TN+FP}$
 - how good a test is at avoiding false alarms. A test can cheat and maximize this by always returning "negative".
- Precision or Positive Predictive Value $\frac{TP}{TP+FP}$
 - how many of the positively classified were relevant. A test can cheat and maximize this by only returning positive on one result it's most confident in.
- F1-Score $\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$
 - Combines Recall and Precision into one quantity

Method	ACC	F1	PPV	TPR	TNR	AUC	$\frac{\text{Events}}{\text{s}}$
Hough	0.81	0.83	0.82	0.85	0.75	0.89	$6.30\cdot10^1$
XGBoost	0.88	0.90	0.87	0.93	0.82	0.94	$5.89 \cdot 10^5$
Hough + XGBoost	0.91	0.92	0.91	0.93	0.89	0.97	$6.30\cdot10^1$
ANN	0.97	0.98	0.98	0.98	0.97	0.99	$1.40 \cdot 10^{4}$

- ANN: Close to perfect score (=1)
- "Hough + XGBoost": path-length difference (slow!), fiber hits, mean and maximum energy deposit → Bragg peak
- "XGBoost": same inputs, except no path-length difference, i.e. only Bragg peak
- "Hough": non-Machine Learning algorithm

A Side Note

Development Time

Time spent [a.u.]

Lukas Bierwirth

Development of a Neural Network for Online Event Reconstruction for a Radiation Monitor

 Handcrafted features: time expensive to develop!

- Hough Transform
 - Output per projection:
 - angle
 - distance from origin
 - From 2-D to 3-D: math

• ANN

- Sampe output as HT
- Architecture inspired by Google's Inception Net
- Can use energydeposit information
- Can capture correlations between projections

• Angle:

• Location (parallel lines):

Lukas Bierwirth

Track Reconstruction: Results

- Location extraction comparable
- Difference of factor two in 68%-Central Interval for angle reconstruction

$68\,\text{\%-CI}_{\mathrm{Hough},\varphi} = 6.88\,\mathrm{deg}\ ,$ $68\,\text{\%-CI}_{\mathrm{ANN},\varphi} = 3.00\,\mathrm{deg}\ .$

Track Reconstruction: Optimizing Hough

er • Ra

- Raw:
 - Noisey
- Up-scaled image:
 - Low noise
 - Computationally expensive
- Gaussian Filter:
 - Low noise
 - Computationally cheap

Energy Reconstruction

- Consider stopped and unstopped events seperately:
 - Stopped: whole energy deposited --> summation (quenching!)
 - Unstopped: Extrapolate Bragg curve
- No non-Machine Learning alternative developed as part of this work --> Compare different ANNs
- Preliminary Results!

- Validate at discrete energies: 40, 50, ..., 90 MeV
- Boundary effects!
- Spikes!
- Unlikely events: stopped 90 MeV protons,...

		Stopped		Unstopped			
ANN	Mean	68 %-CI	95 %-CI	Mean	68 % - CI	95 %-CI	
	[%]	[%]	[%]	[%]	[%]	[%]	
CNN	-0.06	0.39	7.62	-0.07	3.53	10.94	
RNN (cross entropy)	1.49	1.55	17.23	-1.38	12.45	34.44	
RNN (mape)	1.80	1.98	21.82	0.74	11.62	27.75	

- Flat energy distribution \rightarrow "Natural energy" distribution for stopped and unstopped protons
- CNN: unbiased, highest precision
- Long tail issue

PSI Beam Test: Set-up

- At Paul Scherrer Institute (November, 2018)
- Small prototype of the detector (total: 8 layers)
- Mounted on rotary table
- Upstream trigger cross
- Pion beam

PSI Beam Test: Results

- Track rotation angle
- Dead channels!

- Crosstalk not included in simulation → ANN strongly relies on "neighboring pixel pattern" (cf. YZ-plane)
- Hough Transform: intrinsically robust

- More thorough analysis of PSI data (energy calibration, add more processes to simulation)
- Port ANN to small chip \rightarrow integrate into experimental setup
- Explore further ANN architectures
- Put the different parts (energy, track, ...) together to form an autoencoder → capture correlations between different parameters

