Test of high-resolution muon drift tube chambers for the upgrade of the ATLAS experiment

Šejla Hadžić

PhD Recruiting Workshop - 3rd December 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Muon spectrometer upgrade motivated by the upgrade of the high $\mathbf{p}_{\mathrm{T}}\,$ muon trigger system.

Current high p_{T} muon trigger system based on a coincidence of three layers of:

- Resistive Plate Chambers (RPC) in the barrel region
- Thin Gap Chambers (TGC) for the endcaps

Muon spectrometer upgrade motivated by the upgrade of the high $\mathbf{p}_{\mathrm{T}}\,$ muon trigger system.

Current high p_{T} muon trigger system based on a coincidence of three layers of:

- Resistive Plate Chambers (RPC) in the barrel region
- Thin Gap Chambers (TGC) for the endcaps

• New small wheel with high-resolution trigger chambers;

- New thin-gap RPCs trigger chambers;
- Replace current MDTs in this region with new sMDT chambers due to spatial constraints.

To suppress fake muon triggers:

- New small wheel with high-resolution trigger chambers;
- New thin-gap RPCs trigger chambers;
- Replace current MDTs in this region with new sMDT chambers due to spatial constraints.

Working principle

sMDT Operational Parameters

Parameter	sMDT
Gas mixture	Ar:CO ₂ (93:7)
Gas pressure	3 bar (abs)
Gas gain	20 000
Wire potential	2730 V
Wire diameter	50 µm
Single tube resolution	~ 100 µm

- Muon ionises the atoms of the gas
- Drift of the electrons to the anode wire
- Creation of the avalanche close to the wire
 - \circ Electric field ~ 1/r

BIS78 sMDT chambers: Working principle

sMDT (small Muon Drift Tubes) chambers are used as precision tracking detectors

8 layers of tubes organised in 2 multilayers Measurement of the electron drift time Conversion of the drift time to the drift radius

Space to drift time relationship

Cosmic ray - test stand

HV side

RO side

Cosmic ray - test stand

Measured quantities:

- Noise level
- Spatial resolution
- Muon detection efficiency

Noise level measurement

Noise levels are determined as a function of different discriminator threshold.

Off - chamber measurement

• Each mezzanine card is tested in a Faraday cage

On - chamber measurement

• On - chamber noise levels of each card compared with the results from the off - chamber measurement

Noise level measurement

BIS78 - A2

All chambers

Segment of 3 mezzanine cards

- On chamber noise rates follow the shape of the off chamber expectation.
- Noise rates are low and do not exceed off chamber expectation for more than a factor of 2.

Spatial resolution determination

- Low energy cosmic muons are prone to multiple scattering;
- Method that minimizes multiple scattering contribution needed;

For the track passing vertically

$$\sigma(r_{1/2}) = \sigma\left(\frac{r_2 - r_1}{\sqrt{2}}\right)$$

For tracks with inclination (|m<0.01|)

$$\sigma(r_{1/2}) = \sigma\left(\frac{r_2 - r_1}{\sqrt{2}} \mp \frac{m \cdot (z_2 - z_1)}{\sqrt{2} \cdot (1 + m^2)}\right)$$

Spatial resolution determination

- Low energy cosmic muons are prone to multiple scattering;
- Method that minimizes multiple scattering contribution needed;

$$\sigma(r_{1/2}) = \sigma\left(\frac{r_2 - r_1}{\sqrt{2}}\right)$$

For tracks with inclination (|m<0.01|)

$$\sigma(r_{1/2}) = \sigma\left(\frac{r_2 - r_1}{\sqrt{2}} \mp \frac{m \cdot (z_2 - z_1)}{\sqrt{2 \cdot (1 + m^2)}}\right)$$

- All tested chambers have same spatial resolution within measurement uncertainties.
- Agreement with expectation from the test beam measurement with high energy muons.

Muon detection efficiency determination

The muon detection efficiency can be determined for every tube in a chamber.

- Muon track is reconstructed by excluding one layers of tubes.
- Check if the tube crossed by reconstructed track in excluded layer has a hit.
- Repeat process for each tube in a layer
- Repeat process for each layer in a chamber

Muon detection efficiency determination

The muon detection efficiency can be determined for every tube in a chamber.

Due to the

removed

Measured efficiency in agreement with expected value

- Muon track is reconstructed by excluding one layers of tubes.
- Check if the tube crossed by reconstructed track in excluded layer has a hit.
- Repeat process for each tube in a layer
- Repeat process for each layer in a chamber

All chambers

5

Operational point of the new ASD chip

- For the HL-LHC a new first-level muon trigger is planned with increased maximum trigger rate to 1 MHz instead of 100 kHz;
- Beyond capability of the TDC chips on current front end electronics;
 - \circ Front-end boards will be replaced in the 2024/2026 of the LHC;
 - \circ Development of the new ASD chip.

Parameter	Units	Specs	Legacy ASD	New ASD
Signal peeking time	ns	15	14.2	12
Amplification	mV/fC	8.9	10	21
Noise r.m.s	mV	8.5	8	4
Threshold spread	mV		12-16	4
Power consumption	mW		300	360

Operational point of the new ASD chip

- For the HL-LHC a new first-level muon trigger is planned with increased maximum trigger rate to 1 MHz instead of 100 kHz;
- Beyond capability of the TDC chips on current front end electronics;
 - Front-end boards will be replaced in the 2024/2026 of the LHC;
 - \circ Development of the new ASD chip.

Parameter	Units	Specs	Legacy ASD	New ASD
Signal peeking time	ns	15	14.2	12
Amplification	mV/fC	8.9	10	21
Noise r.m.s	mV	8.5	8	4
Threshold spread	mV		12-16	4
Power consumption	mW		300	360

Scintillator

Measured quantities:

- Noise level measurement
- Spatial resolution
- Muon detection efficiency

Noise level measurement

Noise rates determined as a function of the discriminator threshold.

- Lower noise rates compared to the old ASD chips
- Same note rates measured with new as with old chips for 12 mV lower threshold

Spatial resolution

Spatial resolution determined for thresholds: -39 mV, -31 mV and -27mV.

- An improvement of the spatial resolution at -39 mV.
- Spatial resolution of ~ 87 μ m for 12 mV lower threshold.

Efficiency determined for thresholds: -39 mV, -31 mV and -27mV.

• Full efficiency at lower thresholds

Summary

BIS-78 sMDT chamber commissioning

- Noise rates in agreement with the intrinsic noise levels of the ASD chip
 - Average noise rate per tube ~ 60 Hz;
- All chambers have expected spatial resolution of ~ 125 μm;
- All tubes of the chambers are fully efficient with the average efficiency of ~ 98.76 % (in agreement with MC prediction).

New ASD chip operational point determination

Lower noise rates measured with new compared to old ASD chip.

Proposed new operational point is -27 mV:

- Noise rates comparable to values measured with old ASD chip;
- An improvement of the spatial resolution to \sim 87 µm;
- Full efficiency.

Summary

BIS-78 sMDT chamber commissioning

- Noise rates in agreement with the intrinsic noise levels of the ASD chip
 - Average noise rate per tube ~ 60 Hz;
- All chambers have expected spatial resolution of ~ 125 μm;
- All tubes of the chambers are fully efficient with the average efficiency of ~ 98.76 % (in agreement with MC prediction).

New ASD chip operational point determination

Lower noise rates measured with new compared to old ASD chip.

Proposed new operational point is -27 mV:

- Noise rates comparable to values measured with old ASD chip;
- An improvement of the spatial resolution to \sim 87 µm;
- Full efficiency.

Thank you!

Backup

Towards High Luminosity LHC (HL - LHC)

HL - LHC - major upgrade of the LHC to increase its discovery potential after 2025:

Installation of the new accelerator components

Upgrade of the LHC experiments to withstand new conditions

BIS-78 sMDT chambers

Noise measurement - hysteresis 2

Noise measurement - hysteresis 2

Noise level measurement

BIS78 - A6

Maximum drift time

• Standard deviation of the t_{max} distribution equal to the statistical accuracy of the t_{max} measurement.

29

Maximum drift time

• Standard deviation of the t_{max} distribution equal to the statistical accuracy of the t_{max} measurement.

Spatial resolution

- All tested chambers have same spatial resolution.
- Determined resolution in agreement with MC prediction.

Spatial resolution

Spatial resolution determined for:

- 6.25 mV lower hysteresis;
- 8 mV lower threshold.

• Slightly better spatial resolution due to the lower effective threshold

32

BIS78 - A4

Near the tube wall: Not enough primary ionisations electrons to cross threshold

- Dependency of the muon detection efficiency on the applied high voltage was tested
- Multilayer 1: + 2730 V (Operational voltage)
- Multilayer 2: Applying voltages from + 2000 V to + 2770 V
- For each voltage cosmic ray data were taken

High Voltage [V]