Energy Reconstruction with Software Compensation Techniques in Highly Granular Calorimeters

- December 3 2019
 - **Christian Winter**
- MPP PhD Recruiting Workshop

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Motivation

- Physics program at future e^+e^- collider experiments (ILC, CLIC) includes:
 - Higgs precision measurement
 - Search for physics beyond the SM
 - Electroweak precision measurement
- \rightarrow Requires precise reconstruction of all final states
- \rightarrow In turn needs jet energy resolution of 3 4%

Motivation

- Physics program at future e^+e^- collider experiments (ILC, CLIC) includes:
 - Higgs precision measurement
 - Search for physics beyond the SM
 - Electroweak precision measurement
- \rightarrow Requires precise reconstruction of all final states
- \rightarrow In turn needs jet energy resolution of 3 4%

Requires capable detector system and advanced reconstruction methods

Particle Showers

- Particle shower consists of EM and hadronic component \bullet
- EM showers are denser than hadronic ones
- Fluctuations of energy deposited in electromagnetic component
- Hadronic shower has invisible energy
- Different response to hadronic and electromagnetic component of shower depending on the calorimeter
- \rightarrow Results in deterioration of energy resolution
- → Can be fixed hardware or software wise

Particle Showers

- Particle shower consists of EM and hadronic component
- EM showers are denser than hadronic ones
- Fluctuations of energy deposited in electromagnetic component
- Hadronic shower has invisible energy
- Different response to hadronic and electromagnetic component of shower depending on the calorimeter
- \rightarrow Results in deterioration of energy resolution
- → Can be fixed hardware or software wise

Particle Showers

- Particle shower consists of EM and hadronic component
- EM showers are denser than hadronic ones
- Fluctuations of energy deposited in electromagnetic component
- Hadronic shower has invisible energy
- Different response to hadronic and electromagnetic component of shower depending on the calorimeter
- → Results in deterioration of energy resolution
- → Can be fixed hardware or software wise

Recover energy resolution with local software compensation

CALICE Calorimeter

AHCAL:

- Sampling calorimeter
- Active layer consists of:
 - Plastic scintillator
 - SiPM
- High spatial resolution enables new reconstruction techniques

Local software compensation idea:

- Exploit high granularity of calorimeter
- Apply different weights to hits
- Correct difference in response
- Improve energy resolution

Local software compensation idea:

- Exploit high granularity of calorimeter
- Apply different weights to hits
- Correct difference in response
- Improve energy resolution

Christian Winter

Loss function in order to find optimal bin weights: L =

• Divide hit energy spectrum into bins with same amount of energy • Apply weight for each bin for each event

bins **Reconstructed energy for each event:** $E_{SC}^{event} = C_{W-AHCAL} \sum \omega_i(E) \cdot E_i$

Energy dependent weights : $\omega_i(E) = a_i + b_i \cdot \frac{E}{\varsigma} + c_i \cdot \left(2 \cdot \left(\frac{E}{\varsigma}\right)^2 + 1\right)$

$$= \sum_{\text{events}} \left(\frac{(\text{E}_{\text{SC}}^{\text{event}} - \text{E}_{\text{beam}}^{\text{event}})^2}{(55 \% \sqrt{\text{GeV}})^2 \cdot \text{E}_{\text{beam}}^{\text{event}} \cdot \text{N}_{\text{beam}}^{\text{event}}} \right) + \alpha \cdot \sum_{p} \xi_p(\text{E})$$

CALICO
$$A_{p} \Delta_{p} \Delta_{q} \geq \frac{1}{2} t$$

Loss function in order to find optimal bin weights:

• Divide hit energy spectrum into bins with same amount of energy • Apply weight for each bin for each event

cted energy for each event:
$$E_{SC}^{event} = C_{W-AHCAL} \sum_{i}^{bins} \omega_i(E_{i})$$

ependent weights :
$$\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2\right)$$

Loss function in order to find optimal bin weights: L =

events

 $\frac{(E_{SC}^{event} - E_{beam}^{event})^2}{(55\%\sqrt{GeV})^2 \cdot E_{beam}^{event} \cdot N_{beam}^{event}}\right)$

cted energy for each event:
$$E_{SC}^{event} = C_{W-AHCAL} \sum_{i}^{bins} \omega_i(E_{i})$$

 $+\alpha \cdot \sum \xi_p(E)$

Penalty Term

Problem: High local gradients of weight function lead to unphysical behavior

Weight function: $\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$

Problem: High local gradients of weight function lead to unphysical behavior

Weight function: $\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$

Problem: High local gradients of weight function lead to unphysical behavior

Weight function: $\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$

Solution: Enhance loss function by adding penalty term

Penalty term:

$$\xi(\mathbf{E}) = \sum_{i} \left(\frac{d}{d(E/S)} \omega_i(\mathbf{E}) \right)^2$$

Problem: High local gradients of weight function lead to unphysical behavior

Weight function: $\omega_i(E) = a_i + b_i \cdot \frac{E}{S} + c_i \cdot \left(2 \cdot \left(\frac{E}{S}\right)^2 + 1\right)$

Solution: Enhance loss function by adding penalty term

Penalty term:

$$\xi(\mathbf{E}) = \sum_{i} \left(\frac{d}{d(E/S)} \omega_i(\mathbf{E}) \right)^2$$

CALICE W-AHCAL

- Sampling calorimeter
- Equipped with tungsten as absorber

- Prototype was considered for CLIC
- Plastic scintillators combined with SiPMs as active layer

Dataset:

- Recorded at the CERN SPS
- Negative pions from 10 80 GeV for main analysis
- Positive pions from 20 80 GeV for crosscheck

3.8 $\lambda_{\rm I}$

Results W-AHCAL

Christian Winter

Results W-AHCAL

Christian Winter

Results W-AHCAL

- Main improvement caused by low energetic hits located in the first bin
- W-AHCAL nearly self compensating
- Improvement caused by correcting for fluctuations in hadronic component \bullet

CALICE Combined System

Datasets

- CERN, negative pions 10-80 GeV
- FNAL, negative pions 4-60 GeV
- Monte Carlo (FTFP_BERT, QGSP_BERT), negative pions 4-80 GeV

MPP PhD Recruiting Workshop

- Weights change for all bins
- Improvement mainly caused by correcting for lacksquarefluctuations between electromagnetic and hadronic component

Weight Comparison

MPP PhD Recruiting Workshop

Summary & Outlook

- Physics program at future linear collider requires precise reconstruction of all final states
- \rightarrow Highly granular calorimeter + Local software compensation
- Local software compensation with penalty term successfully proven to be a stable method \bullet

W-AHCAL:

- Nearly self compensating
- Improvement up to 10 %

Combined calorimeter system:

• Improvement up to 23 % for testbeam data

Outlook:

- Data of new prototypes can still be investigated
- Timing of new prototypes provides new dimension to software compensation

MPP PhD Recruiting Workshop

Backup

Similar final resolution

MPP PhD Recruiting Workshop

- Apply one weight to each event
- Choose threshold to divide hits
- Correction factor is estimated as fraction of hits below threshold
- Free parameter are extracted from fit

$$E_{sh} = \frac{C_{lim}}{C_{av}} \cdot E_{dep}$$
$$E_{cor} = E_{sh} \cdot (a + b \cdot E_{sh} + c \cdot E_{sh}^2)$$

0.7

8.0

0.9

1.2

1.3

1.4

Scaling Factor

- σ_{SC}/σ_{ST}
- Scaling factor scales contribution of penalty term
- For W-AHCAL: 0.03
- For combined system: 0.1
- Exact value is not important

W-AHCAL Global & Local SC

- Only stable performance up to 60 GeV
- Similar performance of both methods

Linearity

Christian Winter

MPP PhD Recruiting Workshop

Timing Information

- Reject background
- Improve clustering
- Use in software compensation to identify components of showers

CALICE Prototypes

