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The observables RK and RK∗

RK(K∗) =

∫ q2
max

q2
min

dBR(B+(0) → K+(K ∗)µ+µ−)

dq2 dq2

∫ q2
max

q2
min

dBR(B+(0) → K+(K ∗)e+e−)
dq2 dq2

,

• they come from FCNC processes → they are sensitive to NP
effects

• factorization of hadronic form factors → low uncertainties
• LFU → they should be 1 in the SM
→≈ 1σ discrepancy for RK∗ (Belle + LHCb)
→≈ 2.5σ discrepancy for RK (LHCb)
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The work of Bordone, Isidori, Pattori

• universal corrections
• corrections ∝ αem log2(m`/mB)

• corrections of the BRs from ∼ −17% to ∼ −2%

RSM
K∗ =

{
0.906 ± 0.028 0.045 GeV2 < q2 < 1.1 GeV2

1.00 ± 0.01 1.1 GeV2 < q2 < 6 GeV2

RSM
K [1.0, 6.0] = 1.00 ± 0.01
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Outline of the work

Goal 1: improve the SM estimate
• LFUV corrections
• long-distance non-universal corrections
→ magnetic-dipole correction
→ Sommerfeld correction

Goal 2: massless dark photon scenario
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Effective Hamiltonian

Heff = −4 GF√
2

V ∗
tsVtb

10∑
i=1
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8π2 [mbsaσ
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Magnetic-dipole correction

`γµ` → `
[
γµF1(q2) + iF2(q2)σµν q̂ν

]
`

• F2 ∝ m` → LFUV term
• the interference with the LO expression is chiral suppressed →

enanchment for the muon case

0.045 0.1 1 6
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100

q2( GeV2)

−Re(F2), ` = µ
Im(F2), ` = µ
−Re(F2), ` = e
Im(F2), ` = e
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Sommerfeld correction

• regime → non-relativistic
• ordinary QM → deviation from free states due to Coulombian

interaction
• QED → virtual corrections
• it consists in a modification of the differential decay rate:

dΓ(P0 → P1 . . .PN) = Ω · dΓ0 (P0 → P1 . . .PN)

ΩC =
∏

0≤i<j

2παQiQj
βij

1
exp

(
2παQi Qj

βij

)
− 1
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Amplitudes

• the leading SM expression of the differential decay rates has
been recovered

• Adding the corrections:

d2 BR

dŝ dû = Ω
d2 BRLO

dŝ dû +
d2 BRM

dŝ dû ≡ d2 BRLO

dŝ dû +
d2 BRM

dŝ dû +
d2 BRS

dŝ dû
so

d2 BRS

dŝ dû = (Ω− 1)d2 BRLO

dŝ dû
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Branching ratios at LO
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Corrections to B0 → K ∗0`+`−

We recall that d BRLO

dŝ ∼ 10−5
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ŝ
×

10
8

B0 → K ∗0`+`−

` = µ
` = e

0.045 0.1 1
0

1

2

3

4

5

q2( GeV2)

d
B
R

S

d
ŝ
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Corrections to B+ → K+`+`−

We recall that d BRLO

dŝ ∼ 10−6
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Bin integration for B0 → K ∗0`+`−

RK∗ = RLO
K∗

(
1 +∆RM

K∗ +∆RS
K∗

)
[
q2

min, q2
max

]
(GeV2) ∆RM

K∗ ∆RS
K∗

[0.0447, 0.3] −1.3 × 10−3 ∼ 2 × 10−3

[0.0447, 0.5] −1.0 × 10−3 ∼ 1 × 10−3

[0.0447, 1.1] −7.4 × 10−4 -
[1.1, 6] 2.5 × 10−6 -

[0.5, 0.8] −2.2 × 10−4 -
[0.8, 1] −1.2 × 10−4 -
[1, 3] −1.8 × 10−5 -
[3, 6] 1.2 × 10−5 -
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Bin integration for B+ → K+`+`−

RK = RLO
K

(
1 +∆RM

K +∆RS
K

)
[
q2

min, q2
max

]
(GeV2) ∆RM

K ∆RS
K

[0.0447, 0.3] 9.4 × 10−5 ∼ 1 × 10−3

[0.0447, 0.5] 7.4 × 10−5 ∼ 5 × 10−4

[0.0447, 1.1] 5.0 × 10−5 -
[1.1, 6] 1.1 × 10−5 -

[0.5, 0.8] 3.6 × 10−5 -
[0.8, 1] 2.8 × 10−5 -
[1, 3] 1.6 × 10−5 -
[3, 6] 8.0 × 10−6 -
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Dark photon contribution: motivations

possibility of a new s-channel contribution to b → s`+`−:
• unbroken U(1)D gauge interaction in the dark sector
→ exchange of a massless dark photon γ

• millicharged tree-level interaction with the γ

• no tree-level interactions with SM fermions (even in case of
γγ kinetic mixing)

• 1-loop interactions with SM fermions trough heavy messengers
• effective couplings are provided by operator of dimension 5
• built-in suppression → possibility of larger αD
• the magnetic dipole operator is the lowest dimensional

operator we can consider in this scenario
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Dark photon contribution: matrix element

LDP
eff =

∑
q,q′

1
2ΛL

qq′

[
qRσµνq′

L
]
Fµν

D +
1

2ΛR
qq′

[
qLσµνq′

R
]
Fµν

D +

+
∑
``′

1
2Λ``′

[
`σµν`

]
Fµν

D

MDP =−
(

ηR
ΛR

bsΛ``
[sLσµαq̂αbR ] +

ηL
ΛL

bsΛ``
[sRσµαq̂αbL]

)[
`σµβ q̂β`

] i
ŝ

• assuming unique Λ`` for all leptons
• neglecting the term with ΛL

bs because its interference term
with the LO SM amplitude is proporional to ms
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Dark dipole contribution: results

C eff
7 F2 → πη

GF
√

2αV ∗
tsVtbΛ

2
effm̂B

with Λeff =
√
ΛR

bsΛ``

b

s

ℓ−

ℓ+

γ γ
γ

b b ℓ−

s ℓ+

b

s

ℓ−

ℓ+

(a) (b) (c)

Q9,10 Q7 Q7

γ̄

b

s

ℓ−

ℓ+(d)

QDP

7 QDP

ℓ

Λeff = 70 TeV[
q2

min, q2
max

]
(GeV2) ∆RDP

K∗ ∆RDP
K

[0.0447, 0.5] 1.3 × 10−1 5.4 × 10−3

[0.0447, 1.1] 1.2 × 10−1 5.8 × 10−3

[1.1, 6] 4.6 × 10−2 6.0 × 10−3
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Model-independent analysis

Bounds on ΛL,R
bs from b → sXinv:

ΛL
bs = ΛR

bs ⇒ ΛL,R
bs & 3 TeV

Bounds on Λµµ from a = g − 2:

NP under 2σ → Λµµ > 300 GeV

Λeff =
√
ΛR

bsΛ`` > 0.6 TeV
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Conclusions

• Sommerfeld correction
• more relevant in low q2 bins (∼ h in RK∗ and RK )
• a more precise integration is needed to compute its size in

higher q2 bins
• SM magnetic-dipole correction:

• more relevant in low q2 bins (∼ h in RK∗ and ∼ 10−5 in RK )
• dark dipole correction

• with a scale of 70 TeV it could explain the anomaly on RK∗

but not on RK
• we also carried out a model-dependent analysis → 70 TeV is

too low
• m2

B/m2
K∗ enhanchment → larger effects on B → K ∗
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Backup slides
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Behaviour of the ratios
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