Magnetic-dipole corrections to R_K and R_{K^*} observables in the Standard Model and beyond

Palmiotto Marco

3rd of December 2019

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)」

<□ > < @ > < E > < E > E の < C 2

$$R_{\mathcal{K}(\mathcal{K}^*)} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)\mu^+\mu^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)e^+e^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2},$$

<□▶ < @ ▶ < E ▶ < E ▶ E の Q @ 2

$$R_{\mathcal{K}(\mathcal{K}^*)} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)\mu^+\mu^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)e^+e^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2},$$

- they come from FCNC processes \rightarrow they are sensitive to NP effects

◆□▶ < @▶ < ≧▶ < ≧▶ E のQ@ 2</p>

$$R_{\mathcal{K}(\mathcal{K}^*)} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)\mu^+\mu^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \operatorname{\mathsf{BR}}(B^{+(0)} \to \mathcal{K}^+(\mathcal{K}^*)e^+e^-)}{\mathrm{d}q^2} \,\mathrm{d}q^2},$$

- they come from FCNC processes \rightarrow they are sensitive to NP effects
- factorization of hadronic form factors \rightarrow low uncertainties

$$R_{K(K^*)} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \, \mathsf{BR}(B^{+(0)} \to K^+(K^*)\mu^+\mu^-)}{\mathrm{d}q^2} \, \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d} \, \mathsf{BR}(B^{+(0)} \to K^+(K^*)e^+e^-)}{\mathrm{d}q^2} \, \mathrm{d}q^2},$$

- they come from FCNC processes \rightarrow they are sensitive to NP effects
- factorization of hadronic form factors \rightarrow low uncertainties
- LFU \rightarrow they should be 1 in the SM

 $\rightarrow \approx 1\sigma$ discrepancy for R_{K^*} (Belle + LHCb) $\rightarrow \approx 2.5\sigma$ discrepancy for R_K (LHCb)

The work of Bordone, Isidori, Pattori

- universal corrections
- corrections $\propto \, lpha_{
 m em} \log^2(m_\ell/m_B)$
- corrections of the BRs from $\sim -17\%$ to $\sim -2\%$

$$\mathcal{R}_{\mathcal{K}^*}^{\rm SM} = \left\{ \begin{array}{ll} 0.906 \pm 0.028 & 0.045 \, {\rm GeV}^2 < q^2 < 1.1 \, {\rm GeV}^2 \\ 1.00 \pm 0.01 & 1.1 \, {\rm GeV}^2 < q^2 < 6 \, {\rm GeV}^2 \end{array} \right.$$

$$R_{K}^{
m SM}[1.0, 6.0] = 1.00 \pm 0.01$$

(ロト (個) (目) (目) (目) のへ() 3

Outline of the work

(ロ)、

Goal 1: improve the SM estimate

- LFUV corrections
- long-distance non-universal corrections
 - \rightarrow magnetic-dipole correction
 - \rightarrow Sommerfeld correction
- Goal 2: massless dark photon scenario

Effective Hamiltonian

$$Q_7 = \frac{e}{8\pi^2} [m_b \overline{s}_a \sigma^{\mu\nu} (1+\gamma_5) b_a F_{\mu\nu} + o(m_s)]$$

 $Q_{9} = (\overline{s}b)_{V-A}(\overline{\ell}\ell)_{V} \qquad \qquad Q_{10} = (\overline{s}b)_{V-A}(\overline{\ell}\ell)_{A}$

Magnetic-dipole correction

$$\overline{\ell}\gamma^{\mu}\ell
ightarrow \overline{\ell} \big[\gamma^{\mu}F_{1}(q^{2}) + \mathrm{i}F_{2}(q^{2})\sigma^{\mu
u}\hat{q}_{
u}\big]\ell$$

• $F_2 \propto m_\ell \quad
ightarrow ext{LFUV term}$

- the interference with the LO expression is chiral suppressed \rightarrow enanchment for the muon case

Sommerfeld correction

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 Q · 7</p>

- regime \rightarrow non-relativistic
- ordinary $QM \rightarrow deviation$ from free states due to Coulombian interaction
- QED \rightarrow virtual corrections
- it consists in a modification of the differential decay rate:

$$\mathrm{d}\Gamma(P_0\to P_1\ldots P_N)=\Omega\cdot\mathrm{d}\Gamma^0\left(P_0\to P_1\ldots P_N\right)$$

$$\Omega_{\mathsf{C}} = \prod_{0 \leq i < j} rac{2\pi lpha Q_i Q_j}{eta_{ij}} rac{1}{ \mathsf{exp} \Big(rac{2\pi lpha Q_i Q_j}{eta_{ij}} \Big) - 1}$$

Amplitudes

4 日 · 4 日 · 4 目 · 4 目 · 日 · 9 4 0 8

- the leading SM expression of the differential decay rates has been recovered
- Adding the corrections:

$$\frac{\mathrm{d}^2 \,\mathrm{BR}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}} = \Omega \frac{\mathrm{d}^2 \,\mathrm{BR}^{\mathrm{LO}}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}} + \frac{\mathrm{d}^2 \,\mathrm{BR}^{\mathrm{M}}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}} \equiv \frac{\mathrm{d}^2 \,\mathrm{BR}^{\mathrm{LO}}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}} + \frac{\mathrm{d}^2 \,\mathrm{BR}^{\mathrm{M}}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}} + \frac{\mathrm{d}^2 \,\mathrm{BR}^{\mathrm{S}}}{\mathrm{d}\hat{\mathbf{s}} \,\mathrm{d}\hat{\mathbf{u}}}$$
so

$$\frac{\mathrm{d}^2\,\mathsf{B}\mathsf{R}^{\mathrm{S}}}{\mathrm{d}\hat{s}\,\mathrm{d}\hat{u}} = (\Omega-1)\frac{\mathrm{d}^2\,\mathsf{B}\mathsf{R}^{\mathrm{LO}}}{\mathrm{d}\hat{s}\,\mathrm{d}\hat{u}}$$

Branching ratios at LO

Corrections to $B^0 o K^{*0} \ell^+ \ell^-$

<ロ> < 母> < 母> < E> < E> E の () 10

Corrections to $B^+ \to K^+ \ell^+ \ell^-$

<ロ> < 回> < 回> < 三> < 三> < 三> < 三 の Q の 11

Bin integration for $B^0 o K^{*0} \ell^+ \ell^-$

$$extsf{R}_{ extsf{K}^{st}} = extsf{R}_{ extsf{K}^{st}}^{ extsf{LO}} \left(1 + \Delta extsf{R}_{ extsf{K}^{st}}^{ extsf{M}} + \Delta extsf{R}_{ extsf{K}^{st}}^{ extsf{M}}
ight)$$

$\left[q_{\min}^2, q_{\max}^2 ight] (ext{GeV}^2)$	$\Delta R^{ ext{M}}_{\mathcal{K}^*}$	$\Delta R^{ m S}_{{\cal K}^*}$
[0.0447, 0.3]	-1.3×10^{-3}	$\sim 2 imes 10^{-3}$
[0.0447, 0.5]	$-1.0 imes10^{-3}$	$\sim 1 imes 10^{-3}$
[0.0447, 1.1]	$-7.4 imes10^{-4}$	-
[1.1,6]	$2.5 imes10^{-6}$	-
[0.5, 0.8]	$-2.2 imes 10^{-4}$	-
[0.8, 1]	$-1.2 imes10^{-4}$	-
[1,3]	$-1.8 imes10^{-5}$	-
[3,6]	$1.2 imes10^{-5}$	-

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bin integration for $B^+ \to K^+ \ell^+ \ell^-$

$${{\it R}_{{\it K}}}={\it R}_{{\it K}}^{
m LO}\left(1+\Delta {\it R}_{{\it K}}^{
m M}+\Delta {\it R}_{{\it K}}^{
m S}
ight)$$

$\left[q_{\min}^2, q_{\max}^2 ight] (ext{GeV}^2)$	$\Delta R_{K}^{ ext{M}}$	$\Delta R_K^{ m S}$
[0.0447, 0.3]	9.4×10^{-5}	$\sim 1 imes 10^{-3}$
[0.0447, 0.5]	$7.4 imes10^{-5}$	$\sim 5 imes 10^{-4}$
[0.0447, 1.1]	$5.0 imes10^{-5}$	-
[1.1,6]	$1.1 imes10^{-5}$	-
[0.5, 0.8]	$3.6 imes10^{-5}$	-
[0.8, 1]	$2.8 imes10^{-5}$	-
[1,3]	$1.6 imes10^{-5}$	-
[3,6]	$8.0 imes10^{-6}$	-

Dark photon contribution: motivations

possibility of a new s-channel contribution to $b \rightarrow s\ell^+\ell^-$:

- unbroken $U(1)_D$ gauge interaction in the dark sector \rightarrow exchange of a massless dark photon $\overline{\gamma}$
- millicharged tree-level interaction with the γ
- no tree-level interactions with SM fermions (even in case of $\gamma\overline{\gamma}$ kinetic mixing)
- 1-loop interactions with SM fermions trough heavy messengers
- effective couplings are provided by operator of dimension 5
- built-in suppression \rightarrow possibility of larger α_D
- the magnetic dipole operator is the lowest dimensional operator we can consider in this scenario

Dark photon contribution: matrix element

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{DP}} &= \sum_{q,q'} \frac{1}{2\Lambda_{qq'}^{L}} \left[\overline{q}_{R} \sigma_{\mu\nu} q_{L}' \right] F_{D}^{\mu\nu} + \frac{1}{2\Lambda_{qq'}^{R}} \left[\overline{q}_{L} \sigma_{\mu\nu} q_{R}' \right] F_{D}^{\mu\nu} + \\ &+ \sum_{\ell\ell'} \frac{1}{2\Lambda_{\ell\ell'}} \left[\overline{\ell} \sigma_{\mu\nu} \ell \right] F_{D}^{\mu\nu} \\ \mathcal{M}^{\text{DP}} &= - \left(\frac{\eta_{R}}{\Lambda_{bs}^{R} \Lambda_{\ell\ell}} \left[\overline{s}_{L} \sigma_{\mu\alpha} \hat{q}^{\alpha} b_{R} \right] + \frac{\eta_{L}}{\Lambda_{bs}^{L} \Lambda_{\ell\ell}} \left[\overline{s}_{R} \sigma_{\mu\alpha} \hat{q}^{\alpha} b_{L} \right] \right) \left[\overline{\ell} \sigma^{\mu\beta} \hat{q}_{\beta} \ell \right] \frac{\mathrm{i}}{\hat{s}} \end{split}$$

- assuming unique $\Lambda_{\ell\ell}$ for all leptons
- neglecting the term with Λ_{bs}^{L} because its interference term with the LO SM amplitude is proportional to m_{s}

Dark dipole contribution: results

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 16

Model-independent analysis

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q @ 17

Bounds on $\Lambda_{bs}^{L,R}$ from $b \to sX_{inv}$:

$$\Lambda^L_{bs} = \Lambda^R_{bs} \quad \Rightarrow \quad \Lambda^{L,R}_{bs} \gtrsim 3 \, \text{TeV}$$

Bounds on $\Lambda_{\mu\mu}$ from a = g - 2:

NP under
$$2\sigma \rightarrow \Lambda_{\mu\mu} > 300 \text{ GeV}$$

$$\Lambda_{\mathsf{eff}} = \sqrt{\Lambda^{R}_{bs}} \Lambda_{\ell\ell} > 0.6\,\mathsf{TeV}$$

Conclusions

- Sommerfeld correction
 - more relevant in low q^2 bins ($\sim \%$ in R_{K^*} and R_K)
 - a more precise integration is needed to compute its size in higher q^2 bins
- SM magnetic-dipole correction:
 - more relevant in low q^2 bins ($\sim \%$ in R_{K^*} and $\sim 10^{-5}$ in R_K)
- dark dipole correction
 - with a scale of 70 TeV it could explain the anomaly on R_{K^\ast} but not on R_K
 - we also carried out a model-dependent analysis \rightarrow 70 TeV is too low
- $m_B^2/m_{K^*}^2$ enhanchment ightarrow larger effects on $B
 ightarrow K^*$

Backup slides

Behaviour of the ratios

$$\rho(q^{2}) = \frac{\frac{\mathrm{d} \operatorname{\mathsf{BR}}(B \to K\mu^{+}\mu^{-})}{\mathrm{d}q^{2}}}{\frac{\mathrm{d} \operatorname{\mathsf{BR}}(B \to Ke^{+}e^{-})}{\mathrm{d}q^{2}}} \equiv \rho^{\mathrm{LO}}(1 + \delta\rho^{\mathrm{M}} + \delta\rho^{\mathrm{S}})$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < で 20