Performing PDF fits on GPU: a preliminary search for the best solution

Emilio Villa

Supervisor: Dr. Stefano Carrazza Co-supervisor: Dr. Juan Cruz-Martinez

University of Milan

3 December 2019

- Parton Distribution Functions (PDFs)
- Neural-Network PDF (NNPDF) collaboration
- Speeding up the fits: APPLgrid, APFEL and APFELgrid
- Going beyond the Fast Kernel method: convolution on GPU
- Performance analysis
- Conclusions and outlook

Parton Distribution Functions

- **QCD** is the theory of strong interactions between *quarks* and *gluons* (*partons*), the elementary constituents of *hadrons*.
- The factorization theorem allows to determine the hadronic cross sections in terms of a convolution between the partonic cross sections and the PDFs.
- PDFs are the probability densities of finding a parton with a certain momentum fraction x inside the parent hadron at the energy scale Q² of the scattering process.



The expression of a typical cross section $pp \rightarrow X$ reads:

$$\sigma_{pp\to X} = \sum_{s} \sum_{k} \int dx_1 dx_2 \ \hat{\sigma}^{(k)(s)} \alpha_s^{k+k_{LO}} \left(Q^2\right) F^{(s)} \left(x_1, x_2, Q^2\right)$$

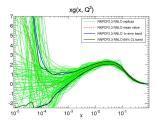
 $F^{(s)}$ represents the partonic density of the *s*-th subprocess:

$$F^{(s)}(x_{1}, x_{2}, Q^{2}) = \sum_{i,j} C^{(s)}_{ij} f_{i}(x_{1}, Q^{2}) f_{j}(x_{2}, Q^{2})$$
$$f_{i} \text{ and } f_{j} \text{ are the PDFs}$$

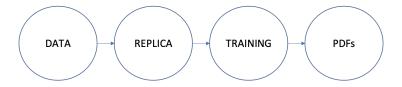
 $C_{ii}^{(s)}$ counts the PDFs combinations that contribute to the s-th subprocess.

PDFs are **non perturbative** objects and, at the moment, they cannot be determined from first principles. However, it is possible to determine them by **fit** to data.

- data \rightarrow hadronic cross sections;
- theory \rightarrow partonic cross sections;
- fit \rightarrow PDFs.



Over the years, the NNPDF collaboration has developed a fitting methodology based on **Monte Carlo methods** and the usage of **neural networks** as interpolating functions.



- huge number of convolutions \rightarrow 40 [h/PDF replica]
- need to speed up the convolutions:
 - reduction of the number of operations required during the fit
 - increase the performances at code level.

APPLgrid and APFEL

Packages such as APPLgrid and APFEL, by means of interpolating techniques, allow to **lower** significantly the number of operations needed at the time of fitting.

APPLgrid

$$W_{\alpha\beta,\tau}^{(p)(s)} = \mathcal{I}_{\tau} \left(Q^2 \right) \int dx_1 dx_2 \hat{\sigma}^{(p)(s)} \mathcal{I}_{\alpha} \left(x_1 \right) \mathcal{I}_{\beta} \left(x_2 \right)$$
(1)

$$\sigma_{pp\to X} = \sum_{s} \sum_{p} \sum_{\alpha\beta\tau} \alpha_{s}^{p+p_{LO}} \left(Q_{\tau}^{2} \right) W_{\alpha\beta,\tau}^{(p)(s)} F_{\alpha\beta,\tau}^{(s)}$$
(2)

APFEL

$$f_i\left(x_{\alpha}, Q_{\tau}^2\right) = \sum_k \sum_{\beta} A_{\alpha\beta, ik}^{\tau} f_k\left(x_{\beta}, Q_0^2\right)$$
(3)

$$F_{\alpha\beta,\tau}^{(s)} = \sum_{i,j} \sum_{k,l} \sum_{\delta,\gamma} C_{ij}^{(s)} \left[A_{\alpha\delta ik}^{\tau} f_k \left(x_{\delta}, Q_0^2 \right) A_{\beta\gamma jl}^{\tau} f_l \left(x_{\gamma}, Q_0^2 \right) \right]$$
(4)

APFELgrid simplifies further the convolution:

$$\sigma_{pp\to X} = \sum_{k,l} \sum_{\delta,\gamma} \operatorname{FK}_{kl,\delta\gamma} f_k\left(\mathsf{x}_{\delta}, \mathsf{Q}_0^2\right) f_l\left(\mathsf{x}_{\gamma}, \mathsf{Q}_0^2\right)$$

$$\operatorname{FK}_{kl,\delta\gamma} \text{ is referred to as Fast Kernel table}$$

Pros:

- number of operations lowered;

- PDFs at the initial scale;
- dot product \rightarrow multi threading.

Cons:

- theory embedded in $\operatorname{FK}\nolimits.$

At the end, the convolution is reduced to a simple matrix imes matrix product:

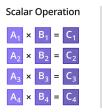
$$\sigma_i = \sum_{j=1}^N \mathrm{FK}_{ij} \mathrm{PDF}_{jn}$$

 $ightarrow \mathsf{data}, \quad \mathbf{j}
ightarrow \mathsf{kl} \delta \gamma, \quad \mathbf{n}
ightarrow \mathsf{PDFs}$

- Ndata ightarrow data (σ at different Q^2);
- Npdf \rightarrow PDFs convolved with the $\rm FK;$
- $N \to N_k N_l N_\delta N_\gamma,$ i.e. product of active partons and x-grid points.

Next step is to **speed up** the evaluation of such product.

- **SSE3** (Streaming SIMD Extensions 3);
- **AVX** (Advanced Vector Extension);
- Eigen;
- OpenBLAS;
- **GSL** (GNU Scientific Library);
- MKL (Math Kernel Library);
- OpenCL (Open Computing Language);
- TensorFlow.



SIMD Operation

A ₁	B ₁		C_1
A ₂	× B ₂	=	C_2
A_3	B ₃		C_3
A_4	B_4		C_4

- SSE3 (Streaming SIMD Extensions 3);
- AVX (Advanced Vector Extension);
- Eigen;
- OpenBLAS
- **GSL** (GNU Scientific Library);
- MKL (Math Kernel Library);
- OpenCL (Open Computing Language);
- TensorFlow.



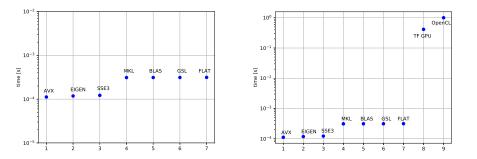
- SSE3 (Streaming SIMD Extensions 3);
- AVX (Advanced Vector Extension);
- Eigen;
- **OpenBLAS** (Open Basic Linear Algebra Subprograms);
- **GSL** (GNU Scientific Library);
- MKL (Math Kernel Library);
- **OpenCL** (Open Computing Language);
- TensorFlow.

CUDA and OpenCL are very similar to each other, however:

- OpenCL can be executed over a variety of platforms, including CPUs, GPUs and other type of processors.
- CUDA executes only on NVIDIA GPUs.

First time benchmark

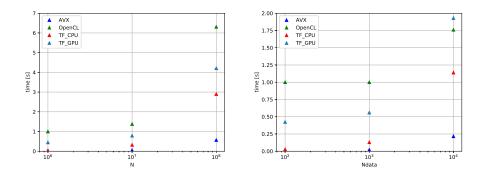
Convolution between an FK 8 \times 35721 (atlas-Z0-rapidity.root) and a single PDF (Ndata = 8 , Npdf = 1 , N = 35721)



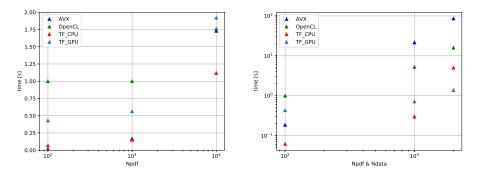
- OpenCL, TF GPU \rightarrow slowest methods;
- need to develop a different approach;
- convolution evaluated for arbitrary dimensions of FK and PDF matrices;
- test AVX and TensorFlow on **CPU**, OpenCL and TensorFlow on **GPU**.

$$\begin{bmatrix} \mathrm{FK}_{11} & \cdots & \mathrm{FK}_{1,N} \\ \mathrm{FK}_{21} & \cdots & \mathrm{FK}_{2,N} \\ \vdots & \ddots & \vdots \\ \mathrm{FK}_{Ndata,1} & \cdots & \mathrm{FK}_{Ndata,N} \end{bmatrix} \times \begin{bmatrix} \mathrm{PDF}_{11} & \cdots & \mathrm{PDF}_{1,Npdf} \\ \mathrm{PDF}_{21} & \cdots & \mathrm{PDF}_{2,Npdf} \\ \vdots & \ddots & \vdots \\ \mathrm{PDF}_{N,1} & \cdots & \mathrm{PDF}_{N,Npdf} \end{bmatrix}$$

Results obtained varying respectively N and Ndata



Results obtained varying respectively Npdf and Npdf & Ndata



Size of the PDF	Size of the FK Table	TensorFlow CPU [s]	AVX [s]	TensorFlow GPU [s]	OpenCL [s]
35721 × 1	8 × 35721	1.10 ·10 ⁻²	1.57 ·10 ⁻⁴	4.14 ·10 ⁻¹	~ 1
10 ⁶ × 1	8 × 10 ⁶	4.70 ·10 ⁻²	5.00 ·10 ⁻³	4.49 ·10 ⁻¹	~ 1
10 ⁷ × 1	8×10^{7}	3.20 ·10 ⁻¹	5.70 ·10 ⁻²	7.90 ·10 ⁻¹	1.38
10 ⁸ × 1	8×10^8	2.90	5.70 ·10 ⁻¹	4.21	6.31
35721×10^2	8 × 35721	6.90 ·10 ⁻²	1.60 ·10 ⁻²	4.31 ·10 ^{−1}	~ 1
35721×10^3	8 × 35721	1.50 ·10 ⁻¹	1.69 ·10 ⁻¹	5.63 ·10 ⁻¹	~ 1
35721×10^4	8 imes 35721	1.12	1.73	1.92	1.76
35721 × 1	$10^2 \times 35721$	2.80 ·10 ⁻²	2.43 ·10 ⁻³	4.24 ·10 ^{−1}	~ 1
35721 × 1	10^{3} $ imes$ 35721	1.30 ·10 ⁻¹	2.14 ·10 ⁻²	5.60 ·10 ⁻¹	~ 1
35721 × 1	$10^4 \times 35721$	1.14	2.16 ·10 ⁻¹	1.93	1.76
35721×10^2	$10^2 \times 35721$	6.20 ·10 ⁻²	1.86 ·10 ⁻¹	4.32 ·10 ^{−1}	~ 1
35721×10^3	10^{3} $ imes$ 35721	3.00 ·10 ⁻¹	21.61	7.19 ·10 ⁻¹	5.25
$35721 \times 2 \cdot 10^{\textbf{3}}$	$2 \cdot 10^3 imes 35721$	5.06	86.13	1.38	15.97

Conclusions¹:

- PDF fits can benefit from **hardware accelerators** (i.e. GPUs and OpenCL compatible devices) thanks to the possibility of offloading the most time-consuming tasks to the accelerator;
- However, in order to achieve performance improvements some precautions are required by defining the sizes of FK tables and the number of PDFs that should be convoluted simultaneously.

Outlook:

• Solutions proposed in this work should be tested in a real PDF fit. This will be possible thanks to the future extension of the n3fit framework to support GPU hardware.

¹S. Carrazza, J. Cruz-Martinez, J. Elizari, E. Villa, *Towards hardware acceleration for parton densities estimation*, Proceeding of PHOTON 2019, preprint arXiv:1909.10547

CPU and GPU specs

Intel(R) Core(TM) i9-9980XE CPU 3.00GHz:

- # of cores: 18
- processor base frequency: 3.00 GHz

GPU Nvidia Titan V:

- # of streaming multiprocessors: 80
- # of CUDA cores: 5120
- base clock: 1.2 GHz
- total memory: 12288 MB
- memory clock: 850 MHz
- total memory bandwidth: 652.8 GB/s

