Halo-independent interpretation of dark matter searches with CRESST

Gonzalo Herrera Moreno

Technische Universität München Max Planck Institute for Physics

Under the supervision of Alejandro Ibarra, Federica Petricca and Andreas Rappelt

Evidence for dark matter

Gaxaxy rotation curve

Cosmic Microwave Background

Colliding galaxy clusters

Large-scale structure

2/16

Cold Dark Matter : WIMPS

- Dark Matter → WIMPS (Weakly Interacting Massive Particles) produced thermally → Relic abundance determined by freeze-out
- WIMP miracle $\rightarrow A \sigma_{DM}$ of the weak interaction range leads to the correct DM relic abundance

Direct detection : CRESST

DD set **strong bounds** in the $\sigma_{DM} - m_{DM}$ parameter space

- \times 1: Ruled out by several experiments
- \times 2: "Islands" not compatible with other experiments results.
- \checkmark 3: Unexplored region, and CRESST is the world leading experiment below 1.6*GeV*!

Theoretical interpretation of experimental outcomes

Direct Detection

• Differential rate of DM-induced scattering :

$$\frac{dR}{dE_R} = \frac{\rho_{dm}}{m_A m_{DM}} \int_{V \ge V_{min}(E_R)} d^3 v v f(\vec{v} + \vec{v}_{obs}(t)) \frac{d\sigma}{dE_R}$$

- Astrophysical uncertainties
- Particle/nuclear physics uncertainties

The Standard Halo Model : Isothermal Sphere

- The equilibrium distribution of a gas of self-gravitating particles is an isothermal sphere with density profile $\rho \propto r^{-2}$
- The velocity distribution $f(\vec{v})$ arises as the solution to the collisionless Boltzmann-equation
- The Maxwell Boltzmann distribution is truncated at the local escape velocity of the Milky Way $v_{esc} \approx 544$ km/s

$$o(r) = \frac{\sigma_v^2}{2\pi G r^2}$$

$$f(v) \propto v^2 \exp(-v^2/2\sigma_v^2)$$

 $\sigma_v \approx 156$ km/s

6/16

Astrophysical uncertainties : The local Dark Matter density

• Local measures : Vertical kinematics of stars near the sun (tracers)

 $\rho_{dm}\approx 0-0.85GeV/cm^3$

• Global measures : Extrapolate ρ_{dm} from the rotation curve

 $\rho_{dm}\approx 0.2-0.4GeV/cm^3$

• Common choice :

 $\rho_{dm}=0.3GeV/cm^3$

• ρ_{dm} linear in the DM scattering rate : Uncertainties can be treated by rescaling the signal normalization

Astrophysical uncertainties: Velocity distribution

- **Dark matter substructure** in the Milky Way → subhalos, streams, debris flow...
- SHM is neither a good fit to observations nor to simulations

8/16

THE SHM MIGHT NOT BE A CORRECT DESCRIPTION OF THE DM HALO!

Halo-independent approach

• A certain dark matter mass and cross section (σ, m_{DM}) is ruled out independently of the velocity distribution if

 $min_{f\left(\vec{v}\right)}\left\{R(\sigma,m_{DM})\right\}>R_{max}$

• A single direct detection experiment is not sufficient to probe a dark matter model in a fully halo independent way, Why?

Some velocity distributions could escape detection by the experiment 10/16

How to parameterize the deviation from the SHM?

- The velocity distribution can be expressed as a superposition of streams $\rightarrow f(\vec{v}) = \sum_i c_{v_i} \delta(\vec{v} v_0)$
- ✓ Information divergences : Rich and varied library of distance measures → Useful to parameterize different physics phenomena!

Minimize $N_{expected} (\sigma, m_{DM})$ Subject to: $D(|f_{MB}|||f|) \le const.$ $c_{v_i} \ge 0$ $\sum_i c_{v_i} = 1$

- Maxwell Boltzmann velocity distribution
- True velocity distribution

• The **Kullback-Leibler divergence** is physically motivated and popular in Information theory → It represents the relative entropy between two distributions

$$D_{KL} = \int \frac{f_{MB}(v)}{f_{MB}(v)} \log\left(\frac{f_{MB}(v)}{f(v)}\right) dv$$

- Specific **dark matter models** could be rescued when **considering astrophysical uncertainties**
- ✓ Parameterized **model-independent** analysis!

DDCalc 2.2.0 : Implementing CRESST III

- DDCalc is the standard dark matter direct detection phenomenology software
- I implemented with the help of Felix Kahlhoefer and Andreas Rappelt the CRESST III experiment, available in the latest version 2.2.0.
- ✓ Good agreement with the official CRESST collaboration limit

Bayesian estimate of the Dark Matter VDF

- The **principle of maximum entropy** constructs the maximally uninformative VDF given some constraints
- CRESST data can be used as a restriction in the set of possible VDF's $\rightarrow \beta D_{KL}(f, f_{MB}) \frac{1}{2}\chi^2(f)$
- The parameter *β* **quantifies** our knowledge of the prior distribution

- The DM velocity distribution inside the Solar System is unknown. Hints from simulations and observations disfavor the Standard Halo Model.
- We have developed a method to quantify the impact of astrophysical uncertainties in a direct detection experiment, based on tools from information theory.
- We have derived upper limits on the DM scattering cross-section using CRESST data, including uncertainties from the velocity distribution.

Thanks for your attention

BACK-UP SLIDES

Direct detection limits: High masses

- What is the impact of astrophysical uncertainties?
- How do these conclusions depend on $f(\vec{v})$?

16/16

Density profile: Core-cusp problem

Discrepancy between inferred dark matter density profile $\rho(r)$ from rotation curves and cosmological N-body simulations predictions (core-cusp problem)

16/16

Elastic kinematics: Velocity spectrum

- Minimal velocity to induce a recoil: $v_{min}(E_R) = \sqrt{\frac{E_R m_N}{2u^2}}$
- Most experiments are only sensitive to the high velocity tail for $m_{\chi} < 10 \ GeV$

CRESST-III is (almost) able to probe the whole velocity spectrum for light WIMPS

Different kinematics : Inelastic DM

- In some models Dark Matter can interact inelastically with nucleai accessing an excited state with mass splitting δ
- Minimal velocity to induce a recoil: $v_{min} = \sqrt{\frac{2\delta}{\mu}}$

 $v_{min,Xe}(E_R) = 392km/s$

 $v_{min,W}(E_R) = 340 km/s$

Experiments are only sensitive to the high velocity tail for IDM 16/16

Proposed by Claude Shannon in 1948 in his article "A Mathematical Theory of Communication"

Suppose that you receive a message that consists of a string of symbols a or b, say

ababbabaabbabaaaab....

where *a* occurs with probability *p* and *b* with probability 1 - p

How much information can one extract from a long message of this kind, say N letters?

How is this information *measured*?

For large *N*, the message will consist approximately of pN occurrences of *a* and (1 - p)N occurrences of *b*. The number of such messages is

$$\frac{N!}{(pN)!((1-p)N)!} \approx \frac{1}{(p)^{pN}(1-p)^{(1-p)N}} = 2^{NH}$$
(1)

where H is the entropy per letter

$$H = -plog p - (1 - p)log(1 - p)$$
(2)

More generally

$$H(p) = -\sum_{i} p_i log(p_i)$$
(3)

Information is measured in bits (base 2), nats (base e)...

The information gain in observing such a message is NH

KL divergence

Q predicts x_i with probability q_i . P predicts x_i with p_i . After observing N times x, how sure could we be that Q is wrong?

If *P* is the correct distribution, we'll observe outcome $i \approx p_i N$ times. We will judge the probability of what we have seen to be

$$\mathcal{P} = \prod_{i=1}^{N} q_i^{p_i N} \frac{N!}{\prod_{i=1}^{N} (p_j N)!}$$
(4)

for large N

$$\frac{N!}{\prod_{i=1}^{N} (p_j N)!} \approx 2^{-NH}$$
(5)

and

$$\mathcal{P} \approx 2^{-N\sum_{i} p_{i} log(\frac{p_{i}}{q_{i}})} \tag{6}$$

The relative entropy (per observation) or KL divergence is

$$D_{KL}(p,q) = \sum_{i} p_i log\left(\frac{p_i}{q_i}\right)$$
(7)
16/16

- Information theory
- Entropy : $H(p) = -\sum_{i} p_i log(p_i)$
- *p_i* : Probability of a discrete random variable
- Entropy quantifies the average amount of information conveyed by a message (event), when considering all possible outcomes.

- Statistical Mechanics
- Entropy: $S = -k_B \sum p_i log(p_i)$
- p_i : Probability of the microstate i
- For a given set of macroscopic variables, the entropy measures the degree to which the probability of the system is spread out over different possible microstates

Useful connection? : The MB distribution can be obtained from both theories independently.

The MB distribution is the *Maximally uninformative distribution* under conservation of energy $\langle H \rangle = E$

Results for χ^2 divergence

Different scaling than *D_{KL}*

Additional plots of bayesian approach

CRESST Limits: The Yellin Methods

- Backgrounds are not known a priori
- Maximum gap: A cross section σ is excluded as being too high if most random experiments would give smaller maximum gaps \rightarrow Function $C_0(x)$ that equals the desired **confidence**
- Extension to **Optimum** interval method \rightarrow consider all integrals with 1,2,... n_{obs} events, new $C_n(x_n)$ obtained via Monte Carlo
- Frequentist method !

