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Evidence for dark matter

Gaxaxy rotation curve Colliding galaxy clusters
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Cold Dark Matter : WIMPS
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NORMAL MATTER
e Dark Matter - WIMPS (Weakly Interacting Massive
Particles) produced thermally — Relic abundance determined
by freeze-out
e WIMP miracle — A opys of the weak interaction range leads
to the correct DM relic abundance
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Direct detection : CRESST
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DD set strong bounds in the opys — mpps parameter space
X 1: Ruled out by several experiments
x 2: "Islands" not compatible with other experiments results.

Unexplored region, and CRESST is the world leading
experiment below 1.6GeV'!
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Theoretical interpretation of experimental outcomes

Direct Detection

e Differential rate of DM-induced scattering :

dR pdm

ar _ WA Yy F 4 E do
dER — mimpp ‘/V > Vonin(ER) d’vv f(V +Vobs (1)) dER

¢ Astrophysical uncertainties
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The Standard Halo Model : Isothermal Sphere

e The equilibrium distribution of a gas of self-gravitating particles
is an

e The velocity distribution f (V) arises as the solution to the
collisionless Boltzmann-equation

e The Maxwell Boltzmann distribution is truncated at the local
escape velocity of the Milky Way v.s. ~ 544 km/s

oy

p(i‘) = 27Gr?

Dark matter halo

Halo

f(v) «cv? exp(—v2/20'3)

o, =~ 156 km/s
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Astrophysical uncertainties : The local Dark Matter density

e L.ocal measures : Vertical a) Pdm < Pdm,ext b) Pdm > Pdm,ext
kinematics of stars near the sun
(tracers)

Pdm ~ 0 — 0.85GeV /cm?

Halo

o Global measures : Extrapolate
Pam from the rotation curve

Pam = 0.2 =0.4GeV [cm?

Prolate Oblate/dark disc

Pow=0.1
— oow=03

e Common choice : 10

Pdam = 0.3GeV /cm?

| H
BM — nuclean [CM*]

® pam linear in the DM scattering
rate :

mpy [GeV] 7 / 1610



Astrophysical uncertainties: Velocity distribution

¢ Dark matter substructure in the Milky Way — subhalos,
streams, debris flow...

e SHM is neither a good fit to observations nor to
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THE SHM MIGHT NOT
BE A CORRECT
DESCRIPTION OF THE
DM HALO!
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Halo-independent approach

e A certain dark matter mass and cross section (o, mpy) is ruled
out independently of the velocity distribution if

ming iy {R(o,mpp)} > Rimax

e A single direct detection experiment is not sufficient to probe a
dark matter model in a fully halo independent way, Why?

fv)
Velocity threshold
of the experiment
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How to parameterize the deviation from the SHM?

e The velocity distribution can be expressed as a

= f(¥) =Zic,6(¥ = vo)

: Rich and varied library of distance
measures — Useful to parameterize different physics
phenomena!

Minimize Neypecrea (0, Mpur)
Subject to: D(| fap || f) < const.
cy, 20
2i =1
o

e True velocity distribution
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o The Kullback-Leibler divergence is physically motivated and
popular in Information theory — It represents the relative
entropy between two distributions

fmB(v) "
SO

Dependence of CRESST Ill limits on Dy, at 90%CL

Dgr= [ fus() log

Dependence of CRESST-IIl limits on D at 90% CL

e SHM
==+ Gaia substructure
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Aquarius simulation
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. Dg=1
. Dy =3

— SHM

=+ Gaia substructure
— SHM**

Aquarius simulation

| 2
T - nucteon [€M?]

03 04 H

7 T 3
mpw [GeV] mopu [GeV]

o Specific dark matter models could be rescued when

considering astrophysical uncertainties

Parameterized model-independent analysis!
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DDCalc 2.2.0 : Implementing CRESST III

e DDCalc is the standard dark matter R
direct detection phenomenology |

34 A
software \

e I implemented with the help of Felix o X
Kahlhoefer and Andreas Rappelt the
CRESST III experiment, available in *
the latest version 2.2.0. -40 \

log1o alcm?
V4

with the official

CRESST collaboration limit
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https://ddcalc.hepforge.org/

Bayesian estimate of the Dark Matter VDF

e The principle of maximum entropy constructs the maximally
uninformative VDF given some constraints

e CRESST data can be used as a restriction in the set of possible
VDF's — 8Dk (. fup) — 5x* ()

e The parameter 5 quantifies our knowledge of the prior
distribution

Maximally entropic Dark Matter VDF, m, = 5 GeV, o, = 10~*°cm?

Ruled out by SHM. What is the
maximally entropic VDF that would 005
reconcile such a dark matter particle with
CRESST?

Velocity threshold
-- SHM

O y—nucleon
What is the maximally
entropic VDF here?

fv) [(km/s)™]

@ Untested by SHM. What is the maximally
entropic VDF that would keep such a dark
matter particle undetected by CRESST?
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Conclusions

e The DM velocity distribution inside the Solar System is
unknown. Hints from simulations and observations disfavor the
Standard Halo Model.

e We have developed a method to quantify the impact of
astrophysical uncertainties in a direct detection experiment,
based on tools from information theory.

e We have derived upper limits on the DM scattering cross-section
using CRESST data, including uncertainties from the velocity
distribution.
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Thanks for your attention
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BACK-UP SLIDES
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Direct detection limits: High masses
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e What is the impact of astrophysical uncertainties?
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Density profile: Core-cusp problem

Discrepancy between inferred dark matter density profile p(r) from
rotation curves and cosmological N-body simulations predictions
(core-cusp problem)
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Elastic kinematics: Velocity spectrum

fiv) [(kmis)™]

Ermpn
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e Most experiments are only sensitive to the high velocity tail for
m, <10 GeV

e Minimal velocity to induce a recoil: v, (ER) =

Sensitivity to the Speed Distribution for m; = 5GeV Sensitivity to the Speed Distribution for m, = 5GeV
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CRESST-III is (almost) able to probe the whole velocity spectrum for
light WIMPS
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rent kinematics

¢ In some models Dark Matter can interact inelastically with
nucleai accesing an excited state with mass splitting &

e Minimal velocity to induce a recoil: v, = 27‘5
(arXiv:1608.02662)
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Experiments are only sensitive to the high velocity tail for IDM
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Information theory: Entropy

Proposed by Claude Shannon in 1948 in his article "A Mathematical
Theory of Communication"

Suppose that you receive a message that consists of a string of
symbols a or b, say

ababbabaabbabaaaab....

where a occurs with probability p and b with probability 1 — p

How much information can one extract from a long message of this
kind, say N letters?
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For large N, the message will consist approximately of pN
occurrences of ¢ and (1 — p) N occurrences of b. The number of such
messages is

N! ~ 1 _ ANH
M= N~ (PN (L= p) PN~ 2 M

where H is the entropy per letter

H = —plogp - (1 - p)log(1 = p) 2)
More generally

H(p) =- Z pilog(pi) 3)

The information gain in observing such a message is NH
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KL divergence

Q predicts x; with probability g;. P predicts x; with p;. After
observing N times x, how sure could we be that Q is wrong?

If P is the correct distribution, we’ll observe outcome i ~ p; N times.
We will judge the probability of what we have seen to be

P = piN N! 4
L o ”
for large N
L ~ ) NH )
Hf\;(ij)!
and )
P ~ 2N Zipilog(gh) 6)

The relative entropy (per observation) or KL divergence is

Dk1(p.9) = ) pilog () )
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Shannon entropy vs Boltzmann entropy

o Information theory .

e Entropy : H(p) = —X; pilog(pi) e Entropy: S =—kg ) pilog(p;)

e p; : Probability of a discrete random e p; : Probability of the microstate i

variable
e For a given set of macroscopic
o Entropy quantifies the average variables, the measures the
amount of information conveyed by a degree to which the probability of
message (event), when considering the system is spread out over
all possible outcomes. different possible microstates

Useful connection? : The MB distribution can be obtained from both
theories independently.

The MB distribution is the Maximally uninformative distribution
under conservation of energy < H >= E

16/16



Results for y? divergence

Dependence of CRESST-lII limits on Dy: at 90% CL. Dependence of CRESST Il limits on D,: at 90%CL
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Different scaling than D
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Additional plots of bayesian approach
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Maximally entropic Dark Matter VDF, m, = 0.5 GeV, g, = 10~cm?
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CRESST Limits: The Yellin Methods

e Backgrounds are not known a
priori

nit E

. : A cross section
o is excluded as being too high
if most random experiments
would give smaller maximum
gaps — Function Cy(x) that
equals the desired confidence

AN/E = Expected Event Number per Un

e Extension to

method — consider all 075
2 095 |

integrals with 1,2,..n,ps events,
)
new C; (x,) obtained via Monte N

C: 0.925
Carlo o
0.9

¢ Frequentist method !

10
Total Expected Number of Events
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