

The University of Manchester

MPHYS Project

Early Universe Resonances:

Preheating of Light Bosons and Heavy Fermions

Ana Alexandre

May 23, 2020

 Inflation is a period of exponential expansion in the Early Universe

- Inflation is a period of exponential expansion in the Early Universe
- ► During inflation, the Universe is occupied by the inflaton field φ

- Inflation is a period of exponential expansion in the Early Universe
- ► During inflation, the Universe is occupied by the inflaton field φ
- Inflation is followed by the period of reheating where most of the matter that makes up the universe today was created

Preheating Introduction

- First stage of reheating
- The inflaton field \u03c6 rolls down its potential and oscillates around its minimum

Preheating Introduction

- First stage of reheating
- The inflaton field \u03c6 rolls down its potential and oscillates around its minimum
- As it oscillates, it can transfer its energy to create new particles

 Could increase our understanding of inflation in the context of Particle Physics

- Could increase our understanding of inflation in the context of Particle Physics
- Possibility to produce heavy particles, with masses much larger than the inflaton, about 10¹³ – 10¹⁷GeV, even when single particle decay is forbidden

- It could be applied to a variety of cosmological contexts
- Provides a possible explanation for the origin of Baryon Asymmetry

- It could be applied to a variety of cosmological contexts
- Provides a possible explanation for the origin of Baryon Asymmetry
- Provides a possible method to create superheavy fermionic Dark Matter

The Inflaton Field Basic Formalism of Preheating

Inflaton Potential

$$V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2$$

where

- ϕ is the (scalar) inflaton field
- ▶ $m_{\phi} \simeq 10^{13} \text{GeV}$

(1)

An expanding Universe containing an homogeneous scalar field such as ϕ can be described by

$$egin{aligned} H^2 &= rac{8\pi}{3M_{Pl}^2} \left[V(\phi) + rac{1}{2} \dot{\phi}^2
ight], \ \ddot{\phi} &+ 3H\dot{\phi} + rac{dV(\phi)}{d\phi} = 0. \end{aligned}$$

(1)

An expanding Universe containing an homogeneous scalar field such as ϕ can be described by

$$egin{aligned} \mathcal{H}^2 &= rac{8\pi}{3M_{Pl}^2} \left[V(\phi) + rac{1}{2} \dot{\phi}^2
ight], \ \ddot{\phi} &+ 3\mathcal{H}\dot{\phi} + rac{dV(\phi)}{d\phi} = 0. \end{aligned}$$

Using the quadratic inflaton potential,

$$a \propto \eta^2$$

 $t \propto a^{3/2}$

where conformal time η is defined as $d\eta = \frac{dt}{a}$

Ana Alexandre | Early Universe ResonancesPreheating of Light Bosons and Heavy Fermions

Without taking into account the backreaction of created particles,

 $\phi(t) \simeq \phi_0(t) \cos(m_\phi t)$

Without taking into account the backreaction of created particles,

$$\phi(t) \simeq \phi_0(t) \cos(m_\phi t)$$

• In a static Universe, with a = 1,

 $\phi(t) \simeq \phi_0(t_0) \cos(m_\phi t)$

Without taking into account the backreaction of created particles,

 $\phi(t) \simeq \phi_0(t) \cos(m_\phi t)$

ln a static Universe, with a = 1,

 $\phi(t) \simeq \phi_0(t_0) \cos(m_\phi t)$

▶ In an expanding Universe, with $a \propto \eta^2$,

$$\phi(t)\simeq rac{M_{Pl}}{\sqrt{3\pi}}rac{\cos(m_{\phi}t)}{m_{\phi}t}$$

Ana Alexandre | Early Universe ResonancesPreheating of Light Bosons and Heavy Fermions

The interaction Lagrangian between the inflaton field $\phi(t)$ and the massive Boson fields $\varphi(x)$

$$\mathcal{L}_{arphi}=rac{1}{2}(\partial_{\mu}arphi)^2-rac{m_{arphi}^2}{2}arphi^2-rac{1}{2}g\phi(t)arphi^2$$

The interaction Lagrangian between the inflaton field $\phi(t)$ and the massive Boson fields $\varphi(x)$

$$\mathcal{L}_{arphi}=rac{1}{2}(\partial_{\mu}arphi)^2-rac{m_{arphi}^2}{2}arphi^2-rac{1}{2}g\phi(t)arphi^2$$

This gives the differential equation

$$\ddot{\varphi}_k + \omega_k^2(t)\varphi_k = \mathbf{0}$$

where
$$\omega_k^2(t)=k^2+M_arphi^2+g^2\phi^2(t)$$
 and $M_arphi\ll m_\phi$

Coupling of Bosons with the Inflaton Field Basic Formalism of Preheating

A general solution is

$$\varphi_k(t) = \varphi_k^+(t) A_k^\dagger + \varphi_k^-(t) A_{-k}$$

where $A_k^{(\dagger)}$ are creation/destruction operators with $A_k |0_{in}\rangle = 0$.

Coupling of Bosons with the Inflaton Field Basic Formalism of Preheating

A general solution is

$$\varphi_k(t) = \varphi_k^+(t) A_k^\dagger + \varphi_k^-(t) A_{-k}$$

where $A_k^{(\dagger)}$ are creation/destruction operators with $A_k |0_{in}\rangle = 0$.

In terms of the final solutions and creation/destruction operators $\widetilde{\varphi}_k^\pm$ and $\widetilde{A}_k^{(\dagger)},$

$$arphi_k(t) = \widetilde{arphi}_k^+(t)\widetilde{A}_k^\dagger + \widetilde{arphi}_k^-(t)\widetilde{A}_{-k}$$

The initial and final creation and destruction operators are linearly related.

(2)

The initial and final creation and destruction operators are linearly related.

Bogolyubov Transformation

$$\widetilde{A}_{k}^{\dagger} = \alpha_{k}A_{k}^{\dagger} + \beta_{k}A_{-k},$$

 $\widetilde{A}_{k} = \alpha_{k}^{*}A_{k} + \beta_{k}^{*}A_{-k}^{\dagger}.$

(2)

- The initial and final creation and destruction operators are linearly related.
- **Bogolyubov Transformation**

$$\widetilde{\mathbf{A}}_{k}^{\dagger} = \alpha_{k} \mathbf{A}_{k}^{\dagger} + \beta_{k} \mathbf{A}_{-k},$$

$$\widetilde{\mathbf{A}}_{k} = \alpha_{k}^{*} \mathbf{A}_{k} + \beta_{k}^{*} \mathbf{A}_{-k}^{\dagger}.$$

• The Bogolyubov coefficients α_k and β_k obey

$$|\alpha_k(\eta)|^2 - |\beta_k(\eta)|^2 = 1$$

(2)

The initial and final creation and destruction operators are linearly related.

Bogolyubov Transformation

$$\widetilde{\mathbf{A}}_{k}^{\dagger} = \alpha_{k}\mathbf{A}_{k}^{\dagger} + \beta_{k}\mathbf{A}_{-k},$$

$$\widetilde{\mathbf{A}}_{k} = \alpha_{k}^{*}\mathbf{A}_{k} + \beta_{k}^{*}\mathbf{A}_{-k}^{\dagger}.$$

• The Bogolyubov coefficients α_k and β_k obey

$$|\alpha_k(\eta)|^2 - |\beta_k(\eta)|^2 = 1$$

We can define the number operator at time t

$$n_k = \widetilde{A}_k^{\dagger} \widetilde{A}_k = |eta_k|^2$$

Ana Alexandre | Early Universe ResonancesPreheating of Light Bosons and Heavy Fermions

The equation of motion can be written as the Mathieu Equation

Mathieu Equation

$$\ddot{ heta} + (A + 2qcos(2 au)) heta = 0$$

The equation of motion can be written as the Mathieu Equation

Mathieu Equation

$$\ddot{\theta} + (A + 2q\cos(2\tau))\theta = 0$$

with the non-dimensional parameters A, q and τ defined as

$$A = \frac{k^2}{m_{\phi}^2} + 2q,$$

$$q = \frac{g^2 \phi_0^2}{4m_{\phi}^2},$$

$$\tau = m_{\phi} t.$$
(3)

Basic Formalism of Preheating

Basic Formalism of Preheating

If $g\phi_0 < m_\phi \ (q \ll 1)$

 Narrow resonance regime

Basic Formalism of Preheating

If
$$g\phi_0 < m_\phi~(q\ll 1)$$

 Narrow resonance regime

Different parameter regions:

Basic Formalism of Preheating

- If $g\phi_0 < m_\phi$ ($q \ll 1$)
 - Narrow resonance regime

Different parameter regions:

- Regions of instability (white regions):
- Regions of stability (grey regions):

Basic Formalism of Preheating

- If $g\phi_0 < m_\phi$ ($q \ll 1$)
 - Narrow resonance regime

Different parameter regions:

- Regions of instability (white regions):
 - Exponential growth
- Regions of stability (grey regions):
 - Quasi-periodic oscillations

Basic Formalism of Preheating

► Broad resonance regime

Basic Formalism of Preheating

(1)

If $g\phi_0>2m_\phi~(q\gg1)$

- Broad resonance regime
- Particle production can be very efficient if evolution of ω_k(t) is not adiabatic

Narrow Resonance – Stable Region Boson Numerical Results

Figure: $\operatorname{Re}(\varphi_k)$ and $\operatorname{Re}(\dot{\varphi}_k)$ against time *t* for q = 1/64: the amplitude oscillates (quasi) periodically

Figure: ln n_k against time t for q = 1/64: no particles are created

Narrow Resonance – Unstable Region

Figure: $\operatorname{Re}(\varphi_k)$ and $\operatorname{Re}(\dot{\varphi}_k)$ against time *t* for q = 1/2: the amplitude grows exponentially with time Figure: ln n_k against time t for q = 1/2: the number of particles also grows exponentially with time

Broad Resonance Boson Numerical Results

Figure: $\operatorname{Re}(\varphi_k)$ and $\operatorname{Re}(\dot{\varphi}_k)$ against time *t* for q = 200: the field's amplitude grows exponentially in small time intervals

Figure: $\ln n_k$ against time *t* for q = 200: the number of particles created grows exponentially the same time intervals and remains constant otherwise

Figure: Resonance regions of the Mathieu equation. Dashed line: A = 2q.

The first resonance band is the only in the narrow resonance regime.

Figure: Plot of $\ln n_k$ against *q* along the line A = 2q, where k = 0, showing the structure of the resonance bands of the Mathieu equation.

- The first resonance band is the only in the narrow resonance regime.
- Others bands belong to the broad resonance regime.

Figure: Plot of $\ln n_k$ against *q* along the line A = 2q, where k = 0, showing the structure of the resonance bands of the Mathieu equation.

- The first resonance band is the only in the narrow resonance regime.
- Others bands belong to the broad resonance regime.
- Consistent with previous simulations in Kofman, Linde, and Starobinsky 1997

Figure: Plot of $\ln n_k$ against *q* along the line A = 2q, where k = 0, showing the structure of the resonance bands of the Mathieu equation.

 Production of light bosons was analysed for a quadratic inflaton potential in a static Universe.

- Production of light bosons was analysed for a quadratic inflaton potential in a static Universe.
- Particle production exhibits parametric resonance following the Mathieu equation.

- Production of light bosons was analysed for a quadratic inflaton potential in a static Universe.
- Particle production exhibits parametric resonance following the Mathieu equation.
- Different combinations of g, q and \u03c60 lead to different parameter regions: stable or unstable.

- Production of light bosons was analysed for a quadratic inflaton potential in a static Universe.
- Particle production exhibits parametric resonance following the Mathieu equation.
- Different combinations of g, q and \u03c60 lead to different parameter regions: stable or unstable.
- The behaviour of the system is consistent with previous simulations Kofman, Linde, and Starobinsky 1997.

The inflaton field ϕ couples to the Dirac Fermions *X* through the Yukawa coupling

$$\mathcal{L}_{Y} = g\phi \bar{X} X$$

where

► g is the coupling constant

Coupling of Fermions with the Inflaton Field Basic Formalism of Preheating

Total fermionic mass

$$M(t) = M_X + g\phi(t)$$

where

• M_X is the bare fermion mass

Coupling of Fermions with the Inflaton Field Basic Formalism of Preheating

Total fermionic mass

$$M(t) = M_X + g\phi(t)$$

where

• M_X is the bare fermion mass

 Fermion production occurs whenever evolution of M(t) is non-adiabatic

Satisfied when
$$M(t) \simeq 0$$
, i.e. $|\phi(t)| = M_X/g$

Production of Fermions Basic Formalism of Preheating

Dirac Equation for the fermion field X with the FRW metric

$$\left(\frac{i}{a}\gamma^{\mu}\partial_{\mu}+\frac{3}{2}H\gamma^{0}-M\right)X=0$$

Dirac Equation for the fermion field *X* with the FRW metric

$$\left(rac{i}{a}\gamma^{\mu}\partial_{\mu}+rac{3}{2}H\gamma^{0}-M
ight)X=0$$

which can be written as

$$(i\gamma^{\mu}\partial_{\mu}-aM)\chi=0$$

where $\chi = a^{3/2} X$.

Production of Fermions Basic Formalism of Preheating

$$\chi(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{x}} \sum_{s} \left(u_s(\eta, k) a_s(k) + v_s(\eta, k) b_s^{\dagger}(-k) \right)$$

where

- $b_s^{(\dagger)}$ and $a_s^{(\dagger)}$ are creation and destruction operators
- s = +, has two possible spin values
- \blacktriangleright *u*_s and *v*_s are Dirac spinors

Normalising the spinors such that

$$U_{s} = \begin{pmatrix} \frac{u_{+}}{\sqrt{2}}\psi_{s} \\ \frac{u_{-}}{\sqrt{2}}\psi_{s} \end{pmatrix} \qquad \qquad V_{s} = \begin{pmatrix} \frac{v_{+}}{\sqrt{2}}\psi_{s} \\ \frac{v_{-}}{\sqrt{2}}\psi_{s} \end{pmatrix}$$

Normalising the spinors such that

$$U_{s} = \begin{pmatrix} \frac{u_{+}}{\sqrt{2}}\psi_{s} \\ \frac{u_{-}}{\sqrt{2}}\psi_{s} \end{pmatrix} \qquad \qquad V_{s} = \begin{pmatrix} \frac{v_{+}}{\sqrt{2}}\psi_{s} \\ \frac{v_{-}}{\sqrt{2}}\psi_{s} \end{pmatrix}$$

The equations of motion can be derived

Equations of Motion

$$u'_{\pm}(\eta) = iku_{\mp}(\eta) \mp iaMu_{\pm}(\eta)$$
(4)

$$u''_{\pm} + \left[\omega_k^2 \pm i(Ma)'\right] u_{\pm} = 0$$
 (5)

where $\omega_k^2 = k^2 + a^2 M^2$

 It is possible to calculate the number of created particles at time η by performing a Bogolyubov transformation

- It is possible to calculate the number of created particles at time η by performing a Bogolyubov transformation
- The Bogolyubov coefficients α_k and β_k obey

$$|\alpha_k(\eta)|^2 + |\beta_k(\eta)|^2 = 1$$
 (6)

- It is possible to calculate the number of created particles at time η by performing a Bogolyubov transformation
- The Bogolyubov coefficients α_k and β_k obey

$$|\alpha_k(\eta)|^2 + |\beta_k(\eta)|^2 = 1$$
 (6)

• The number operator at time η is given by $n_k = |\beta_k|^2$

Equation (4) was numerically solved

- Equation (4) was numerically solved
- To compare with the bosonic case, we can define a parameter q as

$$q\equiv rac{g^2\phi(\eta_0)^2}{4m_\phi^2}$$

 Fermions are created through parametric resonance blocked by the Pauli Principle

Figure: Plot of $|\beta_k|^2$ against η , given in units of m_{ϕ}^{-1} , for $q = 10^6$, $M_X = 100 m_{\phi}$ and N = 5 inflaton oscillations.

- Fermions are created through parametric resonance blocked by the Pauli Principle
- ► n_k jumps sharply between 0 and 1 during short intervals where M(t) ~ 0 and remains constant otherwise

Figure: Plot of $|\beta_k|^2$ against η , given in units of m_{ϕ}^{-1} , for $q = 10^6$, $M_X = 100 m_{\phi}$ and N = 5 inflaton oscillations.

 Fermions are created through parametric resonance blocked by the Pauli Principle

Figure: Plot of $|\beta_k|^2$ against *k*, for $q = 10^6$ and $M_X = 100 m_{\phi}$, for a different number of completed inflaton field oscillations, N = 5, 10, 15, 20.

- Fermions are created through parametric resonance blocked by the Pauli Principle
- The first resonance band is the broadest one, with the bandwidth lowering as k increases

Figure: Plot of $|\beta_k|^2$ against k, for $q = 10^6$ and $M_X = 100 m_{\phi}$, for a different number of completed inflaton field oscillations, N = 5, 10, 15, 20.

Including the expansion of the Universe will destroy the clear parametric-resonance picture

 Including the expansion of the Universe will destroy the clear parametric-resonance picture

It allows for the occupation of modes that were previously forbidden making the production of fermions more effective

The creation of fermions occurs up to a maximum comoving momentum, k_{max}, where the Fermi distribution becomes saturated

- The creation of fermions occurs up to a maximum comoving momentum, k_{max}, where the Fermi distribution becomes saturated
- At k > k_{max}, particle production quickly drops to zero

- The creation of fermions occurs up to a maximum comoving momentum, k_{max}, where the Fermi distribution becomes saturated
- At k > k_{max}, particle production quickly drops to zero
- As the number of completed inflaton oscillations increases, so does the value of k_{max}

► This occurs until particle production stops and the distribution of |β_k|² remains relatively constant with N

Preheating in an Expanding Universe

- ► This occurs until particle production stops and the distribution of |β_k|² remains relatively constant with N
- The number of oscillations it is required to reach the final distribution depends on the value of q

Preheating in an Expanding Universe

- ► This occurs until particle production stops and the distribution of |β_k|² remains relatively constant with N
- The number of oscillations it is required to reach the final distribution depends on the value of q
- For $q = 10^5$, N = 6 corresponds to the final distribution.

▶ n_k jumps sharply between 0 and 1 during short intervals where $M(t) \simeq 0$ until particle production stops

Figure: Plot of $|\beta_k|^2$ against η , in units of m_{ϕ}^{-1} , for $q = 10^5$, $M_X = 100 m_{\phi}$ and N = 8, with expansion taken into account.

Preheating in an Expanding Universe

- ▶ n_k jumps sharply between 0 and 1 during short intervals where $M(t) \simeq 0$ until particle production stops
- Particle production ends after the 6th oscillation and n_k remains constant
- Figure: Plot of $|\beta_k|^2$ against η , in units of m_{ϕ}^{-1} , for $q = 10^5$, $M_X = 100 m_{\phi}$ and N = 8, with expansion taken into account.

Figure: Plot of the final distributions of $|\beta_k|^2$ against *k*, for $q = 10^3, 10^4, 10^5, 10^6$ and $M_X = 30, 40, 100, 100 m_{\phi}$.

- Final distributions for $q = 10^3, 10^4, 10^5, 10^6$
- The number of oscillations required to reach the final distribution was, respectively, N = 1, 4, 6, 20

Figure: Plot of the final distributions of $|\beta_k|^2$ against *k*, for $q = 10^3, 10^4, 10^5, 10^6$ and $M_X = 30, 40, 100, 100 m_{\phi}$.

- Final distributions for $q = 10^3, 10^4, 10^5, 10^6$
- The number of oscillations required to reach the final distribution was, respectively, N = 1, 4, 6, 20

• k_{\max} increases with q

Figure: Plot of the final distributions of $|\beta_k|^2$ against *k*, for $q = 10^3, 10^4, 10^5, 10^6$ and $M_X = 30, 40, 100, 100 m_{\phi}$.

Preheating in an Expanding Universe Fermion Numerical Results

1.0

- Final distributions for $q = 10^3, 10^4, 10^5, 10^6$
- The number of oscillations required to reach the final distribution was, respectively, N = 1.4.6.20
- $-q = 10^3, N = 1$ $q = 10^4$. N = 40.8 $a = 10^5$, N = 6— a = 10⁶, N = 20 0.6 $|\beta|^2$ 0.4 0.2 0.0 Ó 20 40 60 80 100 k
- \blacktriangleright $k_{\rm max}$ increases with *a*
- Particle production is more effective for higher values of q

Figure: Plot of the final distributions of $|\beta_k|^2$ against k, for $q = 10^3, 10^4, 10^5, 10^6$ and

 $M_X = 30, 40, 100, 100 m_{\phi}$.

Production of spin-1/2 fermions was analysed for a quadratic inflaton potential in both a static and an expanding Universe.

- Production of spin-1/2 fermions was analysed for a quadratic inflaton potential in both a static and an expanding Universe.
- Particle production occurs only in short intervals where M(t) ~ 0 and remains constant otherwise.

- Production of spin-1/2 fermions was analysed for a quadratic inflaton potential in both a static and an expanding Universe.
- Particle production occurs only in short intervals where M(t) ~ 0 and remains constant otherwise.
- In a static Universe, parametric resonance was observed.

- Production of spin-1/2 fermions was analysed for a quadratic inflaton potential in both a static and an expanding Universe.
- ► Particle production occurs only in short intervals where $M(t) \simeq 0$ and remains constant otherwise.
- In a static Universe, parametric resonance was observed.
- ► In an expanding Universe, production occurs up to a value k_{max} , which increases with the number of total oscillations of the inflaton field until the ratio ρ_X/ρ_ϕ is saturated.

Estimate analytical solutions in order to obtain faster simulations

Estimate analytical solutions in order to obtain faster simulations

Simulate preheating for different inflaton potentials

Estimate analytical solutions in order to obtain faster simulations

- Simulate preheating for different inflaton potentials
- Apply these results to different cosmological contexts

Giudice, G.F. et al. (1999). "Production of Massive Fermions at Preheating and Leptogenesis". In: *JHEP* 9908.014. URL:

https://arxiv.org/abs/hep-ph/9905242.

Gorbunov, D. S. and V. A. Rubakov (2011). Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory. World Scientific.

- Greene, P. B. and L. Kofman (2000). "On the Theory of Fermionic Preheating". In: *Phys. Lett. D* 62.123516.
- Kofman, L., A. Linde, and A. Starobinsky (1997). "Towards the Theory of Reheating After Inflation". In: *Phys Rev D56*, pp. 3258–3295. URL: https://arxiv.org/abs/hep-ph/9704452.
- Peloso, M. and L. Sorbo (2000). "Preheating of massive fermions after inflation: analytical results". In: *JHEP* 05.016.

Thank you for listening! Any questions?

Parametric Resonance Basic Formalism of Preheating

Ana

Parametric Resonance Basic Formalism of Preheating

For non-adiabatic evolution, must satisfy:

$$\left| rac{\dot{\omega}_k}{\omega_k^2}
ight| \lesssim \left| rac{m_\phi}{g\phi_0} rac{\sin(m_\phi t)}{\cos^2(m_\phi t)}
ight|$$

► Only true in small time intervals where φ(t) = 0

$$t_n = (\pi/2 + \pi n)/m_{\phi}, n \in \mathbb{N}$$

Figure: Resonance regions of the Mathieu equation. Dashed line: A = 2q.

Boson Numerical Results

 Goal is to numerically study the equation

$$\ddot{\varphi}_k + \omega_k^2(t) \varphi_k = \mathbf{0}$$

Figure: Example of the frequency, $\omega_k(t)$, of the system.

Production of Fermions

Basic Formalism of Preheating

Hamiltonian

$$H(\eta) = \frac{1}{a} \int d^{3}k \sum_{s} \{E_{k}(\eta) [a_{s}^{\dagger}(k)a_{s}(k) - b_{s}(k)b_{s}^{\dagger}(k)] + F_{k}(\eta)b_{s}(-k)a_{s}(k) + F_{k}^{*}(\eta)a_{s}^{\dagger}(k)b_{s}^{\dagger}(-k)\}$$

28

where

$$E_{k}(\eta) = k \operatorname{Re}(u_{+}^{*}u_{-}) + aM(1 - u_{+}^{*}u_{+})$$

$$F_{k}(\eta) = \frac{k}{2}(u_{+}^{2} - u_{-}^{2}) + aMu_{+}u_{-}$$

$$E_{k}^{2} + |F_{k}|^{2} = \omega_{k}^{2}$$

- It is possible to calculate the number of created particles at time η by performing a Bogolyubov transformation
- The Bogolyubov coefficients α_k and β_k obey

$$|\alpha_k(\eta)|^2 + |\beta_k(\eta)|^2 = 1$$
 (8)

and can be calculated as

$$\alpha_k(\eta) = \beta \left(\frac{E_k(\eta) + \omega(\eta)}{F_k^*(\eta)}\right)$$
$$|\beta_k(\eta)|^2 = \frac{|F_k(\eta)|^2}{2\omega(\eta)(E_k(\eta) + \omega(\eta))} = \frac{\omega(\eta) - E_k(\eta)}{2\omega(\eta)}$$

Ana Alexandre | Early Universe ResonancesPreheating of Light Bosons and Heavy Fermions

The density of created fermions can be calculated as

Particle density

$$n(\eta) = \langle 0 | \frac{n}{V} | 0 \rangle = \frac{1}{\pi^2 a^3} \int dk k^2 |\beta_k|^2$$

The energy density of the created fermions with respect to the inflaton energy density can be calculated as

Energy density

$$\frac{\rho_X}{\rho_\phi} = \frac{2M_X}{\pi^2} \int dk k^2 n_k \frac{2}{m_\phi^2 \phi_0^2}$$

Ana Alexandre | Early Universe ResonancesPreheating of Light Bosons and Heavy Fermions

Preheating in a Static Universe

41

- The period of the oscillations, in terms of the period of the inflaton oscillations $T_{\phi} = 2\pi$ decreases with *N*
- Suggests a linear relation $T_{|\beta_k|^2} \simeq -0.5N + 15$
- More N values must be studied for a more accurate fit

Ν	No. Peaks	$T_{ \beta_k ^2}(T_\phi)$
5	5	15 ± 3
10	9	11 ± 2
15	14	7.5 ± 1.5
20	21	5.6 ± 1.2

Table: Number of peaks and period of $|\beta_k|^2$ oscillations, $T_{|\beta_k|^2}$, for different *N*, in the first resonance band. The period ois given in terms of the period of the inflaton oscillations $T_{\phi} = 2\pi$.

- Once M_X is above a certain M_X^{max} , the ratio ρ_X/ρ_ϕ is saturated and production no longer occurs
- The energy density exhibits small fluctuations around an average function
- The value of M_X^{max} increases with q

Figure: Plot of the final energy density of the created fermions ρ_X/ρ_ϕ against M_X for $q = 10^2, 10^3, 10^4, 10^5$.

Estimates of the Maximum Fermion Mass

Comparison of Results With Estimates

For the approximated inflaton field, $M_X^{\rm max}$ can be estimated as

$$M_X^{\max} \simeq \frac{2\sqrt{q}}{\pi} m_{\phi}$$
 (9)

For numerically determined the inflaton field in Giudice et al. 1999; Peloso and Sorbo 2000,

$$M_X^{
m max} \simeq rac{\sqrt{q}}{2} m_\phi$$
 (10)

Estimates of the Maximum Fermion Mass

Comparison of Results With Estimates

- The filled line shows the prediction (10) from Giudice et al. 1999
- The dashed line shows the linear regression of the data points with a slope of 0.475 ± 0.007
- v = 0.475x + 0.360 Estimate ln(M^{max}_x) ∝ ¹/₇ln(^q/₇) Numerical 4 (XW)ul Ż 4 6 10 12 14
- This slope is consistent with the expected scaling of $M_{X}^{\rm max}$ with \sqrt{q}

Figure: Plot of $\ln(M_{\chi}^{\max})$ against $\ln(q)$ for $q = 10^2, 10^3, 10^4, 10^5.$

ln(q)

Estimates of the Maximum Fermion Mass

Comparison of Results With Estimates

(45)

- A systematic shift of the results can be observed, which is attributed to the combination of two effects:
 - the filled line corresponds to (10) but the simulations used the approximation of the inflaton field
 - the definition of φ(η₀) differs from what was used in Giudice et al. 1999

Figure: Plot of $\ln(M_{\chi}^{\text{max}})$ against $\ln(q)$ for $q = 10^2, 10^3, 10^4, 10^5$.

Comparison of Results With Estimates

There are several different estimates of k_{max} found in the literature

The estimate found in Giudice et al. 1999 is

$$k_{\rm max} = \left(2m_{\phi}^4 \frac{q}{M_X}\right)^{1/3} \quad (11)$$

Figure: Plot of $\ln(k_{\text{max}})$ against $\ln(q/M_X)$ for $q = 10^2, 10^3, 10^4, 10^5, 10^6.$

Comparison of Results With Estimates

- The filled line shows the prediction (11) from Giudice et al. 1999
- The dashed line shows the linear regression of the data points with a slope of 0.476 ± 0.057
- ► This is not consistent with the expected scaling of k_{max} with $(q/M_X)^{1/3}$

Figure: Plot of $\ln(k_{\max})$ against $\ln(q/M_X)$ for $q = 10^2, 10^3, 10^4, 10^5, 10^6$.

Comparison of Results With Estimates

$$k_{
m max} \propto rac{q^{1/3}}{M_X^{1/6}} \sqrt{\log rac{q^1/2}{M_X}}$$
 (12)

Figure: Plot of $\ln(k_{\text{max}})$ against $\ln(q)$ for $q = 10^2, 10^3, 10^4, 10^5, 10^6$.

Comparison of Results With Estimates

- The filled line shows the prediction (12) from Peloso and Sorbo 2000
- The dashed line shows the linear regression of the data points with a slope of 0.238 ± 0.028
- This is consistent with the expected scaling of k_{max} with q^{1/4}

Comparison of Results With Estimates

The estimate found in Gorbunov and Rubakov 2011 is

$$k_{
m max} \simeq \left(rac{4m_{\phi}^{7/2}}{M_X^{1/2}} q
ight)^{1/3}$$
 (13)

This estimate is in agreement with the scaling of k_{max} with respect to q and M_X in Greene and Kofman 2000 Figure: Plot of $\ln(k_{\text{max}})$ against $\ln(q/M_X^{1/2})$ for $q = 10^2, 10^3, 10^4, 10^5, 10^6.$

Comparison of Results With Estimates

- The filled line shows the prediction (13) from Gorbunov and Rubakov 2011; Greene and Kofman 2000
- The dashed line shows the linear regression of the data points with a slope of 0.318 ± 0.038
- This is consistent with the expected scaling of k_{max} with $(q/M_X^{1/2})^{1/3}$

Figure: Plot of $\ln(k_{\text{max}})$ against $\ln(q/M_X^{1/2})$ for $q = 10^2, 10^3, 10^4, 10^5, 10^6$.