

Probing Ultra-light Axions with Galaxy Cluster Counts

Johannes Diehl

Supervisor: Jochen Weller

Theoretical Background

- QCD Axion:
 - Introduced to solve the CP problem of QCD
 - global chiral U(1) symmetry
 - complex scalar field w/ spont. sym. breaking potential
 - → mexican hat
 - Color anomaly \rightarrow hat tilted, $m_a \sim 10^{-5} \text{ eV}$

Theoretical Background

- ULA (ultra light axion like particle):
 - Ultra light (m_a ~ 10^{-22} eV)
 - Zero modes of antisymmetric tensors in compact space potential compact manifold #axions

Theoretical Background

- ULA (ultra light axion like particle):
 - Ultra light (m_a ~ 10^{-22} eV)
 - Zero modes of antisymmetric tensors in compact space

Motivation

Hui, Ostriker, Tremaine, Witten (2017) arxiv: 1610.08297

- ULAs:
 - Natural, well motivated
 - Potentially solving Λ CDM small scale problems
 - Macroscopic wavelength: $\frac{\lambda}{2\pi} = \frac{\hbar}{mv} \propto 1.92 \text{ kpc} \left(\frac{10^{-22} \text{ eV}}{m_a}\right)$
 - suppressed structure formation at small scales
 - Solves cusp-core, missing satellite, too-big-to-fail problems
- Cluster number counts:
 - Well established for > 20 years
 - Tight constraints on Ω_{dm}
 - Very robust

Cluster Number Counts

Calculate predicted cluster number counts (NCs) for given axion parameters:

Halo Mass Function

Using Tinker-HMF Tinker et al (2008) arxiv: 08<u>03.2706</u>

Take away:

- ULA mass determines onset of suppression, abundancy level of suppression
- Effects from axion mass and abundancy look similar
- Impossible to distinguish models with "big" axion masses

Monte Carlo Analysis

- Poisson Loglikelihood: $\sum_{i,j} N_{ij}^{obs} \ln N_{ij}^{th} N_{ij}^{th}$
- Reference model N_{ij}^{obs} (no observational data)
- 5 bins in cluster mass, 5 bins in redshift (25 total)

Category of parameters	ULA	Cosmology	Observable-mass distribution (Lima & Hu (2005). arxiv: astro-ph/0503363)
Names	m _a , F	Ω_{dm}, A_s, n_s	σ_{lnM} , A_{bias} , n_{bias}
Priors	uninformative	Planck	Gauss (σ_{lnM}), uninformative (rest)

Unconstrained Regime

Summary

- General:
 - DM candidates from QCD or theories beyond the standard model
 - Tiny mass → cosmologically relevant wavelength → suppressed structure formation
- Probing with Galaxy Cluster Counts:
 - Two important parameters: axion mass, axion abundancy
 - Effects of mass and abundancy look similar anisotropic posterior
 - Constraining capability determined by smallest observable cluster masses
 - Robust probe but difficult to improve upon other constraints

Summary

- General:
 - DM candidates from QCD or theories beyond the standard model
 - Tiny mass → cosmologically relevant wavelength → suppressed structure formation
- Probing with Galaxy Cluster Counts:
 - Two important parameters: axion mass, axion abundancy
 - Effects of mass and abundancy look similar anisotropic posterior
 - Constraining capability determined by smallest observable cluster masses
 - Robust probe but difficult to improve upon other constraints

Thank you!

(+ Appendix for more in-depth information)

Some more theory: QCD Axion

- QCD Lagrangian contains the term $\mathcal{L} = \frac{\theta_{eff}}{32\pi} \operatorname{Tr} \left(G_{\mu\nu} \tilde{G}^{\mu\nu} \right)$
 - θ_{eff} consists of two independent contributions from QCD and electroweak parameters \rightarrow fine tuning problem, upper bound $\theta_{eff} \leq 10^{-10}$
- Solution:
 - Intoduce U(1)_{PQ} symmetry (chiral rotations)
 - Introduce complex scalar field $\varphi = \langle \varphi \rangle e^{i\phi/f_a}$
 - SSB of U(1)_{PQ} → Goldstone boson
- Color anomaly generates eff. potential of shape

$$V(\phi) = \Lambda_a^4 \left[1 - \cos\left(\frac{\phi}{f_a}\right) \right]$$

• Small angle approximation:

$$V(\phi) = \frac{1}{2} m_a^2 \phi^2$$
 with $m_a = \Lambda_a^2 / f_a$

Background evolution $\ddot{\phi} + 3H\dot{\phi} + m_a^2\phi = 0$

Example universe: $m_a = 5 \times 10^{-29} \text{eV}$ $\Omega_{a,0} = 0.071$

Perturbation Theory

e.g. Marsh (2016) arxiv: 1510.07633

• EOM for axion overdensity:

$$\ddot{\delta_a} + 2H\dot{\delta_a} + \left(\frac{k^2 c_{s,eff}^2}{a^2} - 4 \pi G \rho_a\right)\delta_a = 0$$

- DM: $c_{s,eff} = 0$
- AxionDM: $c_{s,eff} = c_{s,eff}(k)$

Cluster NCs

Degeneracy Regime

Degeneracy Regime

Degeneracy Regime

Deviation from reference model $\log(m_a[eV]) = -24.0$, F = 0.5

25.05.20

Unconstrained + poisson noise

Probing ULAs with Galaxy Cluster Counts

Suggested reading

- David Marsh: Axion Cosmology (review) arxiv: 1510.07633
- Pierre Sikivie: The Pooltable Analogy to Axion Physics (fun) arxiv: hep-ph/9506229