Search for a Charged Higgs

Simon Grewe

06.07.2020

Max-Planck-Institut für Physik

Charged Higgs

- In the SM, the Higgs sector has been chosen to be as simple as possible
- Alternative approaches predict existence of additional scalars:
 - Higgs singlet model
 - 2HDM
 - 3HDM
 - Higgs triplet model
- Both, the Higgs Doublet and Triplet models predict electrically charged scalars

2HDM(2 Higgs Doublet model)

- Introduces 2 complex SU(2) Doublets
- Type 2 2HDM is required for a MSSM
- 5Higgs Bosons
 - 2 Charged Higgs
 - 2 CP-Even Higss
 - 1 Pseudoscalar (A)
- 7 Free Parameters
 - 5 Higgs masses
 - $\tan(\beta) = \left(\frac{v_1}{v_2}\right)$
 - $sin(\beta \alpha)$ (Mixing between Cp even Higgs)
 - $sin(\beta \alpha)$ ->1(light Higgs becomes SM-like)
 - $\sin(\beta \alpha)$ ->0(heavy higgs becomes SM-like)

$$\phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + \rho_{1} + i\eta_{1}) \end{pmatrix}$$
$$\phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}}(v_{2} + \rho_{2} + i\eta_{2}) \end{pmatrix}$$

Previous Charged Higgs Searches

- Direct Searches
 - Searches at Lep
 - $e^+e^- \rightarrow \gamma Z \rightarrow H^+H^-$
 - Relative model independent
 - Limit $m(H^+) > 80 GeV$
 - LHC
 - ATLAS/CMS Searches
 - $H^+ \rightarrow \tau \nu$ (Interesting for low Charged Higgs masses)
 - $H^+ \rightarrow tb$ (Interesting for high Charged Higgs masses)

Indirect Searches

- Flavour Physics
 - e.g. $B_u \rightarrow \tau \nu$ (sensitive to H^+ at Tree Level)
 - Highly model dependent

Search for charged Higgs bosons decaying into top and bottom quarks at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Investigates $pp \rightarrow tbH^+ \rightarrow ttbb$
- Probes mass range of 200-2000GeV
- Uses 36.1 fb^{-1} of pp collision data at $\sqrt{s} = 13$ TeV
- No excess above expected background ^e observed
- Limits Br x Cross Section to 2.9-0.070 pb

https://arxiv.org/abs/1808.03599

- Decay H⁺-->Wh (h= 125 GeV SM Higgs)is so far uncovered
- Significant BR(H⁺-->Wh) for:
 - N2HDM [<u>https://arxiv.org/abs/1910.06858</u>]
 - Georgi-Machacek model [<u>https://arxiv.org/pdf/1908.00396.pdf</u>]
 - 2HDM scenaria in which the 125GeV Higgs boson is the heaviest CP-even scalar
- Investigating the Case
 - h->bb
 - W->Iv

- BR for 2HDM model with a heavy 125 GeV Higgs
- Calculated with 2HDECAY[<u>https://ar</u> <u>xiv.org/abs/1810.0</u> 0768]
- Large BR for hight sin(b-a)

```
g_{H^+W^+H} \propto \sin(\beta - \alpha)
```


Simulated Signal Events

- Study the Charged Higgs using Monte Carlo Events
- Simulation Data for Charged Higgs (H^+) was produced with MadGraph5
 - Parton Shower and Hadronisation Process were modeld by PYTHIA8.2
- 3 Mass Benchmark points
 - m= 400 GeV
 - m=800 GeV
 - m=1600 GeV
- Normalized to 1pb

Simulated Background Events

- tt pair (Powheg+Pythia8)
- Singel Top production (Powheg+Pythia8)
- W+ jets(Sherpa)
- Z+ jets(Sherpa)
- Di-boson(WW/ZZ) (Sherpa)

Event Reconstruction

- Events with 3 or more jets and only one positive charged lepton are considered
- Higgs Plus is reconstructed from a W and Higgs
- W is reconstructed from Lepton + Neutrino
 - Neutrino is reconstructed with Missing Transverse Energy technique using W boson mass constrain
- Higgs is reconstructed from any two Jets:
- **But**: Which jets come form the Higgs decay ?

Boosted Decision Trees

- Use Boosted Decision Trees(BDT)
- Decision Tree:
 - Asks a series of simple questions(e.g is m>86.9)
 - Next Question depends on Answer
- Boosted:
 - Have a lot of trees(to reduce impact of statistical fluctuations)
 - Give Events that are classified wrong higher weight
 - Next Tree will focus more on them, giving better performance
- BDT returns value between -1 and 1
- Choose the Jet pair Lepton Neutrino combination with the highest score as the Higgs and W

Boosted Decision Trees

- Boosted Decision Trees provided by TMVA Root package were used
 - Max Depth=5
 - nTress=600
 - baggedBoost
- Signal: Jet pair and Lepton Neutrino combination correctly dR matched to MC truth h/W (the Jet Pair that is closest in dR to the truth Higgs is chosen, but dR<0.3 is requierd)
- Background: All the wrong combination of the signal sample
- Trained on:
 - Higgs Mass
 - B-tag score of Higgs jets
 - Delta Phi between Higgs and W candidate
 - pT_{Higgs}/m_{WH}
 - pT_W/m_{WH}

Distribution of Input variables for Signal/background

Training Results

Variable name	Variable importance
$m_{j_{h1}j_{h2}}$	0.216
$p_{\mathrm{T}}^{h}/m_{Wh}$	0.200
$\Delta \Phi(h, W)$	0.183
p_{T}^W/m_{Wh}	0.175
w_{MV1}^{h1}	0.123
w_{MV1}^{h2}	0.105

Event Selection

- Events have been classified by the number of b tagged Jets in the Categories
 - Two Tags
 - Three Tags
 - Four and more Tags
- To Enhance the Signal a way to distinguish between Signal and Background is needed
- Compare Shapes of different observables to find good candidates where the distribution for Signal and Background differ
- The following Observable were tested:
 - Missing Transverse Energy, Higgs/W Transvers Momentum, Higgs Mass, #Jets, BDT Response, Lepton Transverse Momentum, Missing Transvere Energy Significance, Delta Phi Higgs W, # b-Tags, b-Tag Category

Event Selection Optimization

• To find the exact Regions where the Signal is enhanced relative to the Background calculate:

$$\frac{\#s}{\sqrt{\#b}}$$

$$z = \sqrt{2 \cdot (n \log \frac{n(b+\sigma^2)}{b^2 + n\sigma^2}) - \frac{b^2}{\sigma^2} \log(1 + \frac{\sigma^2 + (n-b)}{b \cdot (b+\sigma^2)})}$$

- For all intervals between max(Observable) and lower Bound(Observable)
- And min(Observable) to upperBound(Observable)

The followig cuts were chosen to define the Signal Region

- The Region with BDT Response > 0.7 is defined as the signal Region
- Find a Region where m_{hW} distribution of the background is similar wrt. m_{hW} distribution in the SR
- For most Regions in BDT Response this is the case
- Choose the one where the the background is most enhanced over the signal

-0.5< max BDT<0.3

Merged Jet event selection

- Especially for high Charged Higgs masses the jets can be merged into one
- If a fat jet is present choose the one with highest pT as (SM) Higgs
 - If Jet mass is compatible with Higgs mass (90-140) GeV -> SR
 - Else CR
- Reconstruct W from Lepton + MET
- Based on Studies of Patrick Bongratz

• To find the exact Regions where the Signal is enhanced relative to the Background calculate:

$$\frac{\#s}{\sqrt{\#b}}$$

$$z = \sqrt{2 \cdot (n \log \frac{n(b+\sigma^2)}{b^2 + n\sigma^2}) - \frac{b^2}{\sigma^2} \log(1 + \frac{\sigma^2 + (n-b)}{b \cdot (b+\sigma^2)})}$$

- For all intervals between max(Observable) and lower Bound(Observable)
- And min(Observable) to upperBound(Observable)

of Background Events and z:

	#Events(600-1000)GeV no pt cut	#Events(600-1000)GeV pT Lepton > 150 GeV	z_{05} no pt cut	z_{05} pt cut
Two Tags	4682	2618	1.87	3.11
Three Tags	3507	1854	7.73	8.66
Four+ Tags	858	533	8.60	7.40

	#Events(1000-2000)GeV no pt cut	#Events(1000-2000)GeV pT Lepton> 150 GeV	z_{05} no pt cut	z_{05} pt cut
Two Tags	5263	4135	7.72	8.68
Three Tags	2958	2241	7.95	6.94
Four+ Tags	708	545	5.53	4.9

Significance is reduced in 4 tag Region("right Region")

Event Yield Tables

Resolved:

	2-tag SR	3-tag SR	4 + tag SR	2-tag CR	3-tag CR	4+ tag CR
$H \rightarrow hW \rightarrow l\nu bb(m=400 GeV)$	$3450{\pm}110$	$2600{\pm}100$	620 ± 50	$520 {\pm} 40$	$71\pm$ 18	6 ± 4
$H \rightarrow hW \rightarrow l\nu bb(m = 800 GeV)$	2700 ± 100	$2076\pm~91$	580 ± 40	540 ± 40	118 ± 19	8 ± 5
$H \rightarrow hW \rightarrow lvbb(m=1600 GeV)$	$2660{\pm}110$	$1170~\pm70$	225 ± 29	120 ± 30	51 ± 14	7 ± 4
ttbar+singletop	$243440{\pm}160$	$26390{\pm}50$	$1478{\pm}~13$	60040 ± 90	1530 ± 14	45.0 ± 2.5
W+jets	6530 ± 40	399 ± 7	20.8 ± 1.5	4226 ± 25	76.4 ± 3.1	1.15 ± 0.29
DiBoson	469 ± 5	30 ± 1	$2.83{\pm}0.29$	$125.0{\pm}2.9$	4.1 ± 0.6	0.025 ± 0.014

Merged:

	2-tag SR	3-tag SR	4+ tag SR	2-tag CR	3-tag CR	4+ tag CR
$H \rightarrow hW \rightarrow l\nu bb(m=400 GeV)$	600 ± 50	$490 {\pm} 40$	165 ± 23	249 ± 31	83 ± 18	17.0 ± 6.3
$H \rightarrow hW \rightarrow l\nu bb(m=800 GeV)$	5000 ± 140	3670 ± 120	910 ± 60	$1110 {\pm} 70$	320 ± 40	$24{\pm}13$
$H \rightarrow hW \rightarrow l\nu bb(m=1600 GeV)$	5570 ± 150	$3090{\pm}110$	740 ± 50	$3320{\pm}120$	$1130{\pm}70$	131 ± 23
ttbar+singletop	$21000{\pm}100$	8950 ± 31	690 ± 9	$56840{\pm}80$	3500 ± 20	171 ± 4
W+jets	3303 ± 22	187 ± 4	13 ± 1	4033 ± 22	170.9 ± 3.8	$5.3 {\pm} 0.5$
DiBoson	262 ± 4	17 ± 1	$1.65 {\pm} 0.24$	266 ± 4	$13.6 {\pm} 0.9$	$0.63 {\pm} 0.15$

- Background mostly from Tops
- The 3, and 4 Tag Region are the most sensitive
- Merged Topology become important for higher masses

 S/\sqrt{B} under the $\mathrm{Peak}(\pm 2\sigma)$

Resolved	m=400 GeV	m = 800 GeV	m=1600 GeV
2Tags	6.75	9.587	69.19
$3 \mathrm{Tags}$	16.08	21.60	79.73
4+Tags	15.85	24.07	46.57
merged			
2Tags	1.63	18.81	95.68
3Tags	4.25	48.77	183.20
4+Tags	5.94	45.91	151.19

Hadronic Channel

- W decays fully hadronic
- Top quark decays semi-leptonic
- Similar Approach as in Leptonic Channel
 - BDT to reconstruct H+
 - BDT is more complicated Find 4 instead of 2 jets
 - Shape Comparison to Optimize Event Selection
- Currently studied by Shubham Bansal[Uni Bonn]

BDT Hadronic Channel

- Signal: : Jet pair and Lepton Neutrino combination correctly dR matched to MC truth h/W
- Background: All wrong combinations
- 1 : H_mass : 1.516e-01 2 : Phi_HW : 1.482e-01 3 : Wp_mass : 1.439e-01 4 : Wp_pT/mass_VH : 1.326e-01 5 : H_pT/mass_VH : 1.297e-01 6 : btagjH1 : 1.033e-01 7 : btagjH2 : 7.514e-02 8 : btagjW1 : 6.635e-02 9 : btagjW2 : 4.927e-02

- Signal Region
 - pT_Higgs>140GeV
 - pT_W>100GeV
 - N_jets>6
 - BDT_Score>0.9
- Currently no CR defined
- Still Work in Progress

Summary/Outlook

- A first Event Selection has been built
- A Signal and Control Region have been defined
- Next:
 - MC/Data comparison studies in the CR
 - Calculate Asimov limits

Backup

These Calculations have been done both scanning right to left(Lowerbound) and left to right(Upperbound)

- How well does the highest pT jet overlap with the Higgs?
- Calculate # of jets where dR with respect to the Higgs is smaller than 1.0, 0.8, 0.6 over # of all jets
- In the 4-Tag CR region the statistics are too low , to calculate a sensible value

	2-Tag SR	3-Tag SR	4-Tag SR	2-Tag CR	3-Tag CR	4-Tag CR
m=1600 GeV dR=1	0.978	0.968	0.9789	0.980	0.968	
m=1600 GeV dR=0.8	0.977	0.967	0.975	0.979	0.966	
m=1600 GeV dR=0.6	0.972	0.963	0.975	0.978	0.962	
m=800 GeV dR=1	0.962	0.960	0.967	0.922	0.960	
m=800 GeV dR=0.8	0.956	0.949	0.964	0.919	0.953	
m=800 GeV dR=0.6	0.948	0.942	0.970	0.894	0.939	
m=400 GeV dR=1	0.717	0.758	0.804	0.736	0.541	
m=400 GeV dR=0.8	0.675	0.734	0.780	0.706	0.556	
m=400 GeV dR=0.6	0.595	0.730	0.766	0.631	0.532	

- New Samples for ttbar have been made with Sherpa
- Compare Shapes and Calculate Ration
- For Lepton Pt, MET, nJets, mVH

- Compare Normalization of two samples in the different regions
- Calculate:

 $\frac{Integtal(Sherpa) - Integral(Powheg + Pythia8)}{Integral(Powheg + Pythia8)}$

-	SR_2Tag	SR_3Tag	SR_4+Tag	CR_2Tag	CR_3Tag	CR_4+Tag
Merged Lep_P	-1.1%	-8.1%	-7.1%	-1.7%	-4.5%	+2.6%
Resolved Lep_P	-7.9%	-16.7%	-4.3%	-1.5%	+0.9%	-34.3%
Merged Lep_N	+23.2%	+26.3%	+36.9%	+30.7%	+19.8%	-100.0%
Resolved Lep_N	-2.96%	-2.15%	+0.6%	-3.4%	-0.8%	+0.6%

	m=400 GeV	m=800 GeV	m=1600 GeV
dR < 0.2			
MVA >= 0.9	23.8%	57.3~%	76.2%
MVA >= 0.8	21.4%	54.5%	75.4%
$MVA \ge 0.7$	20.0%	52.2%	74.3%
MVA >= 0.6	19.0%	50.3%	73.0%
MVA >= 0.5	18.0%	49.2%	71.4%
all	15.2%	44.5%	65.8%
dR < 0.3			
MVA >= 0.9	36.5%	70.2%	85.8%
MVA >= 0.8	32.9%	67.4%	84.8%
MVA >= 0.7	31.6%	65.3%	83.9%
MVA >= 0.6	30.4%	63.5%	83.2%
MVA >= 0.5	29.1%	62.6%	82.1%
all	25.3%	57.8%	77.4%
dR < 0.4			
MVA >= 0.9	46.9%	79.1%	90.0 %
MVA >= 0.8	42.6%	76.4%	88.9 %
MVA >= 0.7	40.7%	74.3%	88.5%
MVA >= 0.6	39.4%	72.5%	88.1%
MVA >= 0.5	38.1%	71.7%	87.2 %
all	33.9%	66.7%	83.3%
dR < 0.5			
MVA >= 0.9	54.6%	84.9%	93.4%
MVA >= 0.8	49.8%	82.4%	92.1%
MVA >= 0.7	47.5%	80.1%	91.5%
MVA >= 0.6	46.22%	78.4%	91.0%
MVA >= 0.5	44.8%	77.6%	90.2%
all	40.4%	73.0%	86.8%
dR<0.6			
MVA >= 0.9	61.1%	88.7%	95.3%
MVA >= 0.8	56.6%	86.5%	94.0%
MVA >= 0.7	54.0%	84.2%	93.4%
MVA >= 0.6	52.5%	82.7%	93.2%
MVA >= 0.5	51.1%	81.9%	92.3%
all	46.3%	77.4%	89.1%

Fraction of chosen di-jet/ Lepton/MET combination within a certain dR to the truth Higgs/W

#Events in CR

of all Event * Intergral Lenght

	m=400 GeV	m = 800 GeV	m = 1600 GeV	Background
$0.0 < Maxw_{BDT} < 0.5$	0.36	0.24	0.32	0.77
$-0.1 < Maxw_{BDT} < 0.5$	0.32	0.21	0.28	0.73
$-0.2 < Maxw_{BDT} < 0.5$	0.28	0.19	0.26	0.699
$0.0 < Maxw_{BDT} < 0.4$	0.30	0.20	0.26	0.75
$-0.1 < Maxw_{BDT} < 0.4$	0.27	0.18	0.23	0.7
$-0.2 < Maxw_{BDT} < 0.4$	0.24	0.16	0.21	0.67
$-0.3 < Maxw_{BDT} < 0.4$	0.21	0.14	0.19	0.63
$0.0 < Maxw_{BDT} < 0.6$	0.42	0.29	0.39	0.8
$-0.1 < Maxw_{BDT} < 0.6$	0.38	0.26	0.35	0.76
$-0.2 < Maxw_{BDT} < 0.6$	0.34	0.23	0.32	0.72
$-1.0 < Maxw_{BDT} < 0.0$	0.05	0.02	0.03	0.43
$-0.5 < Maxw_{BDT} < 0.0$	0.06	0.04	0.06	0.39
$-0.5 < Maxw_{BDT} < 0.3$	0.13	0.09	0.12	0.51
$-0.2 < Maxw_{BDT} < 0.3$	0.19	0.13	0.17	0.62
$-0.3 < Maxw_{BDT} < 0.3$	0.17	0.11	0.15	0.58 ⁴⁸