Search for heavy charged Higgs bosons in final states with two charged leptons and neutrinos at $\sqrt{s} = 13$ TeV with the **ATLAS detector**

Searching for new particles outside the standard model with the help of machine learning methods

Lisa Hofbauer, 13th July 2020

1. Background and Motivation

1.1 Reasons to search for Higgs bosons outside the standard model

There are phenomena in our universe which the current Standard Model of Particle Physics (SM) cannot explain

- Dark Matter & Dark Energy
- Neutrino mass
- Baryon asymmetry
- Hierarchy problem
- Gravity

Many theories have been suggested on how the Standard Model can be <u>extended</u> to explain some/all of these properties

Probably the most well known theory:

- Minimal Supersymmetric Standard Model (MSSM)

Contains a Two Higgs Doublet Model (2HDM) and therefore heavy charged Higgs bosons

2HDM needed for Higgsino anomalies and electroweak symmetry breaking

2HDM has equal fermion content and $SU(3)_C \times SU(2)_L \times U(1)_Y$ as current SM. But Higgs sector has two SU(2)doublets.

Problems <u>MSSM</u> would solve:

- Hierarchy problem
- Has a candidate for a dark matter particle (LSP)
- Neutrino mass (lepton number violating MSSM)
- Baryon asymmetry (in very constrained parameter space)

There are extensions to the MSSM which incorporate gravity and/or put weaker constraints on parameters

2. The specific analysis 2.1 Main production mode

g

Production mode depends on m_{H^+}

For heavy $(m_{H^+} > 200 \text{ GeV})$ charged Higgs bosons the Feynman Diagram (right) shows the dominant production mode

2.2 Involved particles and decays

- h: $BR(h \rightarrow b\bar{b}) \approx 56\%$, $BR(h \rightarrow c\bar{c}) \approx 3\%$

- $W: BR(W \to \ell \nu) \approx 30\%$, $BR(W \to qq) \approx 70\%$
- t: $BR(\bar{t} \rightarrow \bar{b}W^-) \approx 91\%$

ℓ = electron or muon, no tau

1.2 Properties and difficulties of this decay process

Main background:

- tt and Z + jet background

Difficulties:

- two lepton channel: Can't identify which lepton comes from top and which comes from charged Higgs decay
- two neutrinos: Can't identify what part of the missing energy comes from top and which comes from charged Higgs decay
- no general reconstruction possible (only for limit of high energy charged higgs)
- only reconstruction for standard model higgs possible

1.3 Method and goal of this data analysis

Higgs boson signal form relevant background processes

signal events.

Order of analysis:

- Event Selection & setting useful variables
- Train alogrithm with Monte Carlo simulated data
- Put real LHC Run 2 data into the tree and look at resulting signal-backgroundseparation

- Main Goal: Use machine learning algorithms to separate hypothetical charged
- <u>Method:</u> Train an algorithm with sample data to best distinct background from

3. Data analysis using Machine Learning 3.1 The ROOT Framework

ROOT used in every aspect of data analysis at LHC (generally High Energy Physics)

ROOT outside of physics:

- Neuroscience
- Commercial Data Mining
- Industrial Control Systems
- Defence
- Finance

Most important ROOT properties:

- double), but also "ROOT data types" like TH1, TGraph, TTree.
- which a number of different data can be stored for each event.
- TLeaf: Data for a single variable
- TChain: TTree spread over different TFiles

- TFile: In- and output medium. Can store all basic data types (int, float,

- TTree: Main way LHC data is stored. Every entry of the Tree is an event (either real data or Monte Carlo Simulation). The Tree has "branches" in

3.2 TMVA 4

What is TMVA 4?

"Toolkit for Multivariate Data Analysis"

Includes Neural Networks, Likelihood Functions, **Boosted Decision Trees (BDT)**, ...

What is Multivariate Data Analysis?

Way of finding patterns in multidimensional data by analysing several data variables at the same time

Why do we use Multivariate Data Analysis?

- Correlations between variables are visible
- More dimensions \rightarrow more accurate/meaningful results

3.3 Boosted Decision Trees

Properties:

- Successive binary structure
- Splits data for one variable at a time until a stop criterion is fulfilled
- **Boosting:**
- Input weight gets in- or decreased depending on the correctness of previous classification
- Classification false: weight is increased
- Classification correct: weight is decreased

Goal: Find best splitting criterion for each variable

Training the algorithm:

- supervised with this already known information
- See which variables are good for splitting
- Train until happy with classification efficiency

- Input data is split randomly into two categories: training and test data

- Supervised learning: Since we put simulated data into the tree, we know for every event if it is signal or background. The tree outcomes can be

<u>Overtraining</u>

The algorithm splits training data with very high accuracy, but cannot generalize to new data leading to poor performance

Causes for overtraining:

- Too little data
- Data too homogenous

Solutions to prevent overtraining:

- Splitting available data in training and test data
- Performance on the training sample should not be better than on the test sample
- Pruning: Cutting away unnecessary variables in the tree

4. My analysis 4.1 Event Selection and BDT variables

Selectioncriteria:

- Number of Jets higher than two
- Number of b-tagged Jets more than two
- Invariant mass of two leptons higher than 15 GeV
- One negatively and one positively charged lepton
- Leading lepton with $p_T > 27$ GeV
- Subleading lepton with $p_T > 10$ GeV

Selectioncriteria:

- Electrons need to have η outside of $1.37 < |\eta| < 1.52$
- If the subleading lepton is an electron: $p_T > 15$ GeV
- Jets with $|\eta| < 2.5$ are required to have $p_T > 20$ GeV
- Jets with $2.5 \le |\eta| < 4.5$ have to have $p_T > 30$ GeV

- Leptons outside the Z-Boson mass window 83 GeV $< m_{\ell\ell} < 99$ GeV n=0

<u>Variables:</u>	$- \Delta E(j_2 + \ell_1 + \ell_2 + E_T^{miss}, j_3)$	- m _{max} (j-pair)
$- m(b_1 + b_2 + \ell_1 + \ell_2 + E_T^{miss})$	- $p_T^{max}(h_{cand})$	- m _{min} (j-pair)
- $\Delta m(j_2 + \ell_1, j_1 + j_3 + \ell_1)$	- E_T^{miss}	- $p_T^{min}(h_{cand})$
- $p_T(j_1 + j_2)$	$- m(\ell_1 + \ell_2)$	$- \Delta p_T(j_1, j_3 + \ell_1)$
- $p_T(j_3 + \ell_1)$	$- \Delta p_T(j_1, j_3)$	- <i>m_{max}</i> (b-pair)
$- \Delta E(\ell_1 + E_T^{miss}, j_1 + j_2)$	- $\Delta p_T(\ell_2, \ell_1)$	- <i>m_{min}</i> (b-pair)
- $E(j_1)$	$- \Delta p_T(b_2, b_1 + \ell_2)$	$- \Delta p_T(j_2, j_3 + \ell_1)$
- $\Delta E(\ell_1, E_T^{miss} + j_2)$	- $m(h_{cand})$	- nBJets

Best Separation: 6.785e-01

Worst Separation: 1.942e-02

4.2 BDT Training

Signal correlation

	MET	nBJet	s mLL	hmass	maxhP	Pt minhPt	DPT13	DPT4	DPT5	DPT6	DPT7
MET:	+1.000	+0.021	-0.208	0.068	+0.131	+0.072	+0.103	-0.251	+0.248	-0.031	+0.248
nBJets:	+0.021	+1.000	-0.016	+0.068	+0.102	+0.276	-0.073	+0.005	-0.019	+0.014	-0.019
mLL:	-0.208	-0.016	+1.000	+0.000	-0.043	-0.021	-0.055	+0.263	+0.020	+0.305	+0.020
hmass:	-0.068	+0.068	+0.000	+1.000	+0.127	+0.221	-0.027	-0.026	-0.075	+0.020	-0.075
maxhPt:	+0.131	+0.102	-0.043	+0.127	+1.000	+0.326	+0.581	-0.003	+0.319	+0.035	+0.319
minhPt:	+0.072	+0.276	-0.021	+0.221	+0.326	+1.000	-0.182	+0.028	+0.001	+0.023	+0.001
DPT13 :	+0.103	-0.073	-0.055	-0.027	+0.581	-0.182	+1.000	-0.028	+0.448	+0.031	+0.448
DPT4:	-0.251	+0.005	+0.263	-0.026	-0.003	+0.028	-0.028 -	+1.000	-0.017	-0.035 -	0.017
DPT5:	+0.248	-0.019	+0.020	-0.075	+0.319	+0.001	+0.448	-0.017	+1.000	+0.131	+1.000
DPT6:	-0.031	+0.014	+0.305	+0.020	+0.035	+0.023	+0.031	-0.035	+0.131	+1.000	+0.131
DPT7:	+0.248	-0.019	+0.020	-0.075	+0.319	+0.001	+0.448	-0.017	+1.000	+0.131	+1.000
DM1 :	+0.016	+0.080	+0.097	+0.171	+0.166	+0.214	-0.079	+0.025	+0.034	+0.078	+0.034
DE1:	+0.029	-0.005	-0.052	+0.059	+0.221	+0.049	+0.285	-0.105	+0.194	+0.037	+0.194
DE2 :	+0.012	-0.000	+0.176	+0.003	-0.083	+0.001	-0.095	+0.176	+0.084	+0.105	+0.084
DE3:	-0.292	-0.038	+0.315	-0.015	+0.034	-0.064	+0.150	+0.531	-0.012	+0.145	-0.012
EJ1:	+0.094	-0.000	-0.035	+0.061	+0.329	+0.088	+0.388	-0.051	+0.207	+0.043	+0.207
PTJ3L1:	-0.140	+0.047	+0.312	+0.129	+0.230	+0.132	+0.114	+0.556	-0.047	+0.184	-0.047
PTJ1J2:	+0.167	+0.017	-0.039	+0.076	+0.758	+0.200	+0.800	-0.002	+0.444	+0.062	+0.444
MBJP1:	+0.005	+0.073	+0.015	+0.002	+0.017	+0.022	+0.033	-0.034	+0.026	+0.019	+0.026
MBJP2:	+0.091	+0.021	-0.019	+0.084	+0.570	+0.187	+0.391	-0.003	+0.213	+0.047	+0.213
MJP1:	+0.020	+0.000	-0.006	+0.016	+0.025	+0.015	+0.011	+0.006	+0.032	+0.003	+0.032
MJP2:	+0.100	-0.058	-0.017	+0.055	+0.398	+0.100	+0.470	-0.004	+0.246	+0.065	+0.246
M1:	+0.060	+0.077	+0.378	+0.053	+0.517	+0.190	+0.266	+0.310	+0.210	+0.267	+0.210

DM1	DE1	DE2	DE3	EJ1	PTJ3L1	PTJ1J2	MBJP1	MBJP2	MJP1	MJP2
+0.016	+0.029	+0.012	-0.292	+0.094	-0.140	+0.167	+0.005	+0.091	+0.020	+0.100
+0.080	-0.005	-0.000	-0.038	-0.000	+0.047 +	-0.017	+0.073	+0.021	+0.000	-0.058
+0.097	-0.052	+0.176	+0.315	-0.035	+0.312	-0.039	+0.015	-0.019	-0.006	-0.017
+0.171	+0.059	+0.003	-0.015	+0.061	+0.129 -	+0.076	+0.002	+0.084	+0.016	+0.055
+0.166	+0.221	-0.083	+0.034	+0.329	+0.230 -	+0.758	+0.017	+0.570	+0.025	+0.398
+0.214	+0.049	+0.001	-0.064	+0.088	+0.132 -	+0.200	+0.022	+0.187	+0.015	+0.100
-0.079 -	+0.285	-0.095 -	+0.150 -	+0.388	+0.114 +	-0.800	+0.033	+0.391	+0.011	+0.470
+0.025	-0.105	+0.176	+0.531	-0.051	+0.556 -	0.002	-0.034	-0.003	+0.006	-0.004
+0.034	+0.194	+0.084	-0.012	+0.207	-0.047 -	+0.444	+0.026	+0.213	+0.032	+0.246
+0.078	+0.037	+0.105	+0.145	+0.043	+0.184	+0.062	+0.019	+0.047	+0.003	+0.065
+0.034	+0.194	+0.084	-0.012	+0.207	-0.047 -	+0.444	+0.026	+0.213	+0.032	+0.246
+1.000	+0.264	+0.175	+0.029	+0.274	+0.284	+0.251	+0.025	+0.122	+0.020	+0.142
+0.264	+1.000	+0.522	+0.330	+0.922	+0.109	+0.388	+0.022	+0.188	-0.008	+0.248
+0.175	+0.522	+1.000	+0.529	+0.372	+0.218	-0.040	+0.020	-0.006	-0.002	+0.016
+0.029	+0.330	+0.529	+1.000	+0.360	+0.387	+0.106	-0.002	+0.045	-0.012	+0.073
+0.274	+0.922	+0.372	+0.360	+1.000	+0.134	+0.528	+0.024	+0.257	-0.001	+0.323
+0.284	+0.109	+0.218	+0.387	+0.134	+1.000	+0.288	+0.018	+0.164	+0.010	+0.188
+0.251	+0.388	-0.040 -	+0.106	+0.528	+0.288 +	+1.000	+0.024	+0.510	+0.016	+0.579
+0.025	+0.022	+0.020	-0.002	+0.024	+0.018 -	+0.024	+1.000	+0.021	+0.034	+0.029
+0.122	+0.188	-0.006	+0.045	+0.257	+0.164	+0.510	+0.021	+1.000	+0.072	+0.804
+0.020	-0.008	-0.002 ·	-0.012 -	0.001 +	+0.010 +	0.016	+0.034	+0.072	+1.000	+0.052
+0.142	+0.248	+0.016	+0.073	+0.323	+0.188	+0.579	+0.029	+0.804	+0.052	+1.000
+0.157	+0.159	+0.169	+0.360	+0.272	+0.397	+0.401	+0.020	+0.365	+0.020	+0.216

M1 +0.060 +0.077 +0.378 +0.053 +0.517 +0.190 +0.266 +0.310 +0.210 +0.267 +0.210 +0.157 +0.159 +0.169 +0.360 +0.272 +0.397 +0.401 +0.020 +0.365 +0.020 +0.216 +1.000

Background correlation

	MET	nBJets	s mLL	hmass	maxHPt	minhPt	DPT13	DPT4	DPT5	DPT6	DPT7
MET:	+1.000	+0.027	+0.115	+0.111	+0.133	+0.079	+0.248	+0.068	+0.308	+0.067	+0.308
nBJets:	+0.027	+1.000	+0.004	+0.054	+0.072	+0.080	+0.033	+0.024	+0.038	+0.011	+0.038
mLL:	+0.115	+0.004	+1.000	+0.119	+0.077	+0.060	+0.064	+0.226	+0.151	+0.372	+0.151
hmass:	+0.111	+0.054	+0.119	+1.000	+0.493	+0.504	+0.161	+0.087	+0.150	+0.112	+0.150
maxhPt	: +0.133	+0.072	+0.077	+0.493	+1.000	+0.598	+0.429	+0.231	+0.328	+0.201	+0.328
minhPt:	+0.079	+0.080	+0.060	+0.504	+0.598	+1.000	+0.107	+0.095	+0.195	+0.119	+0.195
DPT13 :	+0.248	+0.033	+0.064	+0.161	+0.429	+0.107	+1.000	+0.334	+0.600	+0.206	+0.600
DPT4:	+0.068	+0.024	+0.226	+0.087	+0.231	+0.095	+0.334	+1.000	+0.241	+0.117	+0.241
DPT5:	+0.308	+0.038	+0.151	+0.150	+0.328	+0.195	+0.600	+0.241	+1.000	+0.259	+1.000
DPT6:	+0.067	+0.011	+0.372	+0.112	+0.201	+0.119	+0.206	+0.117	+0.259	+1.000	+0.259
DPT7:	+0.308	+0.038	+0.151	+0.150	+0.328	+0.195	+0.600	+0.241	+1.000	+0.259	+1.000
DM1 :	+0.110	+0.049	+0.048	+0.258	+0.461	+0.350	+0.242	+0.107	+0.322	+0.092	+0.322
DE1:	+0.114	+0.036	+0.010	+0.172	+0.353	+0.205	+0.508	+0.137	+0.388	+0.092	+0.388
DE2 :	+0.122	+0.026	+0.108	+0.114	+0.252	+0.135	+0.367	+0.217	+0.337	+0.121	+0.337
DE3:	+0.010	+0.019	+0.242	+0.099	+0.248	+0.088	+0.461	+0.509	+0.305	+0.249	+0.305
EJ1:	+0.177	+0.043	+0.047	+0.197	+0.408	+0.234	+0.587	+0.226	+0.431	+0.136	+0.431
PTJ3L1:	+0.095	+0.041	+0.240	+0.252	+0.526	+0.359	+0.444	+0.512	+0.270	+0.298	+0.270
PTJ1J2:	+0.240	+0.060	+0.065	+0.297	+0.657	+0.390	+0.821	+0.334	+0.604	+0.220	+0.604
MBJP1:	-0.018	+0.065	+0.014	+0.035	+0.049	+0.080	+0.048	+0.025	+0.004	+0.011	+0.005
MBJP2:	+0.080	+0.063	+0.040	+0.265	+0.552	+0.331	+0.293	+0.152	+0.213	+0.133	+0.213
MJP1:	+0.037	+0.016	+0.019	+0.027	+0.033	+0.036	+0.023	+0.015	+0.040	+0.015	+0.040
MJP2:	+0.189	+0.051	+0.042	+0.216	+0.472	+0.279	+0.618	+0.257	+0.450	+0.153	+0.451
M1:	+0.222	+0.087	+0.400	+0.259	+0.539	+0.279	+0.407	+0.463	+0.350	+0.389	+0.350

DM1	DE1	DE2	DE3	EJ1	PTJ3L1	PTJ1J2	MBJP1	MBJP2	MJP1	MJP2
+0.110	+0.114	+0.122	+0.010	+0.177	+0.095	+0.240	-0.018	+0.080	+0.037	+0.189
+0.049	+0.036	+0.026	+0.019	+0.043	+0.041	+0.060	+0.065	+0.063	+0.016	+0.051
+0.048	+0.010	+0.108	+0.242	+0.047	+0.240	+0.065	+0.014	+0.040	+0.019	+0.042
+0.258	+0.172	+0.114	+0.099	+0.197	+0.252	+0.297	+0.035	+0.265	+0.027	+0.216
+0.461	+0.353	+0.252	+0.248	+0.408	+0.526	+0.657	+0.049	+0.552	+0.033	+0.472
+0.350	+0.205	+0.135	+0.088	+0.234	+0.359	+0.390	+0.080	+0.331	+0.036	+0.279
+0.242	+0.508	+0.367	+0.461	+0.587	+0.444	+0.821	+0.048	+0.293	+0.023	+0.618
+0.107	+0.137	+0.217	+0.509	+0.226	+0.512	+0.334	+0.025	+0.152	+0.015	+0.257
+0.322	+0.388	+0.337	+0.305	+0.431	+0.270	+0.604	+0.004	+0.213	+0.040	+0.450
+0.092	+0.092	+0.121	+0.249	+0.136	+0.298	+0.220	+0.011	+0.133	+0.015	+0.153
+0.322	+0.388	+0.337	+0.305	+0.431	+0.270	+0.604	+0.005	+0.213	+0.040	+0.451
+1.000	+0.477	+0.388	+0.211	+0.503	+0.399	+0.585	+0.025	+0.308	+0.034	+0.429
+0.477	+1.000	+0.847	+0.600	+0.965	+0.421	+0.631	+0.028	+0.236	+0.019	+0.469
+0.388	+0.847	+1.000	+0.667	+0.784	+0.398	+0.469	+0.028	+0.167	+0.018	+0.350
+0.211	+0.600	+0.667	+1.000	+0.669	+0.446	+0.448	+0.040	+0.170	+0.010	+0.335
+0.503	+0.965	+0.784	+0.669	+1.000	+0.477	+0.709	+0.029	+0.275	+0.024	+0.529
+0.399	+0.421	+0.398	+0.446	+0.477	+1.000	+0.689	+0.026	+0.355	+0.026	+0.525
+0.585	+0.631	+0.469	+0.448	+0.709	+0.689	+1.000	+0.023	+0.444	+0.032	+0.754
+0.025	+0.028	+0.028	+0.040	+0.029	+0.026	+0.023	+1.000	+0.088	+0.062	+0.028
+0.308	+0.236	+0.167	+0.170	+0.275	+0.355	+0.444	+0.088	+1.000	+0.035	+0.563
+0.034	+0.019	+0.018	+0.010	+0.024	+0.026	+0.032	+0.062	+0.035	+1.000	+0.034
+0.429	+0.469	+0.350	+0.335	+0.529	+0.525	+0.754	+0.028	+0.563	+0.034	+1.000
+0.309	+0.274	+0.295	+0.470	+0.368	+0.509	+0.495	+0.062	+0.408	+0.034	+0.370

4.3 Future of the analysis

- Remove variables that don't benefit the tree → Look at correlations and try to reduce them as good as possible
- Remove variables that don't sufficiently separate signal and background
- Try out new variables and see if adding them helps the analysis
- Right now analysis only runs for $m_{H^+} = 800$ GeV, but we also want to do it for $m_{H^+} = 400$ GeV and $m_{H^+} = 1600$ GeV