Test of small-diameter monitored drift tube (sMDT) chambers for the ATLAS Muon-Spectrometer

ATLAS Experiment

- Largest and most complex scientific instrument ever built
- LHC collides Protons with an energy of 13 TeV collisions
- ATLAS is a general purpose detector at one of the four collision points

ATLAS motivation

- Study electroweak symmetry breaking: measurement of Higgs Boson couplings
- Search for physics beyond standard model
- precision measurements of Standard model processes and parameters
- Muons are key final states for lots of processes

precise Muon spectrometer needed

Detection of particles

- Inner Detector: charge and momenta of charged particles
- Calorimeters: energy of photons, electrons and hadrons
- Calorimeter stops electrons, photons and hadrons
- Muon-Spectrometer: Largest part of the detector

Muon Spectrometer

- Detect and measure Muon momenta
- Bending their trajectories with large superconducting air-core toroid magnets
- Gaseous detectors for precision spatial measurements
- Fast trigger chambers for timing and triggering

Muon Spectrometer

RPC and MDT chambers

MDTs: tracking the trajectories of the muons composed of drift tubes filled with gas

RPCs: triggering chambers for fast triggering of the muons

RPCs

- Large planar capacitor filled with gas
- Uniform electric field
- Electron avalanche immediately after ionization
- Reconstruction of trajectories in the endcap region

LHC upgrades

HL-LHC upgrade: Phase 1: upgrade of injectors Phase 2: new focussing magnets and crab cavities

Goal: increase integrated luminosity by a factor of 10 for further scientific researches concerning the standard modelATLAS detector must be upgraded for larger amounts of data

Muon spectrometer upgrades

- BIS 78 pilot project
- BIS sMDT upgrade
- Replacement of large parts of frontend- ,trigger- and readout electronics
- Completely redesigned trigger scheme for RPCs and TGCs
- Power system replacements
- MDT-upgrade of frontend-, trigger- and readout electronics

BIS sMDT upgrade project

Problem: significant rate of fake muon triggers

- For areas with poor acceptance: additional thin-gap RPCs
- not enough space: sMDTs instead of MDTs in BI small sectors

BIS 78 pilot project

- Installed in barrel-endcaptransition region with poor acceptance
- Single two mulitlayer sMDT chamber and RPC triplets
- Performance is studied for further upgrades (BIS sMDT)

BIS 1-6 upgrade

- All BIS chambers will be replaced by sMDTs & RPCs
- Simpler geometry
- In-Plane alignment system between the mulitlayers
- Better positioning of platforms
- Constructed during run 3

Timeline of the upgrade

- 16 sMDT chambers + RPCs in LS2 (BIS78)
- 96 sMDT chambers + RPCs in LS3 (BIS 1-6)

Differences between sMDT and MDT tubes

Parameter	MDT	\mathbf{sMDT}		
Tube material	Aluminium	Aluminium		
Outer tube diameter	$29.970~\mathrm{mm}$	$15.000 \mathrm{~mm}$		
Tube wall tickness	$0.4 \mathrm{mm}$	$0.4 \mathrm{mm}$		
Wire material	gold-plated W/Re $(97/3)$	gold-plated W/Re $(97/3)$		
Wire diameter	$50 \ \mu m$	$50 \; \mu m$		
Gas mixture	Ar/CO_2 (93:7)	Ar/CO_2 (93:7)		
Gas pressure	3 bar (absolute)	3 bar (absolute)		
Gas gain	2×10^4	2×10^4		
Wire potential	3080 V	2730 V		
Maximum drift time	$\sim 700 \text{ ns}$	$\sim 190~{\rm ns}$		
Average resolution per tube	$83 \ \mu m$	$106 \ \mu m$		
Drift tube muon efficiency	95%	94%		

Functioning principle of drift tubes

- Gas filled aluminium cylinders
- Grounded tube wall
- HV applied to wire
- Mouns ionize gas atoms
- Electrons drift towards wire
- Create an avalanche of electrons
- Positive ions drift towards tube wall

Reconstruction of trajectory

Resolution on a momentum measurement

- Multiple scattering
- Intrinsic resolution of tracking chambers
- Uncertainity in the relative position of the muon chamber
- Magnet coils
- Interaction vertex
- Uncertainity in the magnetic field map
- Energy loss to the calorimeters

Advantages of small-diameter drift tubes

- Smaller maximum drift time
- Half size cross section exposed to radiation
- Prevents space-charge fluctuations
- Uncharged operational parameters
- Different wire potential
- 8 tube layers

Drift tube design and fabrication

- Optimized for mass production
- High accuracy in wire positioning
- Ground connections in holes between tubes
- Gas connectors
- Certain wire tension

Design of sMDT Chambers

- Several tube layers glued to a supporting frame
- Platforms, Lenses and LEDs for position measuring

Tests of BIS1 prototyp

- Platform measurements (Axial- Praxial-Platforms, B-Platforms, CCC-Platforms)
- Torsion measurements
- Torsion measurements with different weights
- positioning of tubes important for precise momentum measurements

Goal: understanding the mechanical properties

Optical alignment system

- 1. Platform glued to chamber (green platforms)
- 2. Mechanical extension is attached to the platform (blue)
- 3. Optical elements are mounted on the extension (grey)

Features of the Alignment system

- Monitors chamber positions in real time
- Only two out of three chambers have projectives/lenses
- Projective lines connect 3 chambers
- Reuse of existing alignment mechanics and sensors
- Positions of optical elements have to be measured precisly to reduce errors

Test set-up for AP-Platform measurements

- Height above wire
- Distance to x-axis
- Distance to y-axis

	side 1	
	AP Platforms	
Distance between Platforms	909,993	
standard deviation	0,007	
deviation to reference value	-0,007	
reference value	910	
	HV	RO
height of platforms	19,486	19,578
standard deviation	0,012	0,001
deviation to reference value	-0,014	0,078
reference value	19,5	19,5
distance of platforms to x	91,696	91,653
standard deviation	0,0524	0,004
deviation to reference value	0,046	0,03
reference value	91,65	91,65
distance of platforms to y	1359,376	449,385
standard deviation	0,012	0,009
deviation to reference value	0,134	0,134
reference value	1359,5	449,5
height of endcaps	373,838	373,818
standard deviation	0,04	0,045
deviation to reference value	0,166	0,146
reference value	373,672	373,672

Results of side 1 for the Axial- and Praxial-Platforms

	side 2	
	AP Platforms	
Distance between Platforms	909,983	
standard deviation	0,002	
deviation to reference value	-0,017	
reference value	910	
	HV	RO
height of platforms	19,443	19,489
standard deviation	0,006	0,001
deviation to reference value	-0,057	-0,011
reference value	19,5	19,5
distance of platforms to x	83,048	82,998
standard deviation	0,008	0,003
deviation to reference value	-0,002	-0,052
reference value	83,05	83,05
distance of platforms to y	1225,388	315,401
standard deviation	0,003	0,005
deviation to reference value	-0,112	-0,1
reference value	1225,5	315,5
height of endcaps	373,83	373,878
standard deviation	0,014	0,013
deviation to reference value	0,158	0,206
reference value	373,672	373,672

Results of side 2 for the Axial- and Praxial Platforms

Test set-up for B- and CCC-Platform

measurements

B-Platforms:

X-Axis, Y-Axis, height

CCC-Platforms:

X-axis, Y-axis, height

Results of side 2 for the B- and CCC-Platforms

	side 2							
	AP Platforms		B-Platformen		CCC-Platforms			
Distance between Platforms	909,983		701,975		516,213			
standard deviation	0,002		0,003		0,002			
deviation to reference value	-0,017		0,025		0,013			
reference value	910		702		516,2			
	HV	RO	HV	RO	HV		RO	
					1	2	1	2
height of platforms	19,443	19,489	12,849	12,948	7,732	10,346	7,614	10,319
standard deviation	0,006	0,001	0,028	0,015	0,001	0,013	0,024	0,011
deviation to reference value	-0,057	-0,011	-0,051	0,048	-0,568	0,046	-0,686	0,019
reference value	19,5	19,5	12,9	12,9	8,3	10,3	8,3	10,3
distance of platforms to x	83,048	82,998	66,014	66,0356	354,393		354,413	
standard deviation	0,008	0,003	0,007	0,003	0,008		0,003	
deviation to reference value	-0,002	-0,052	0,014	0,036	0,093		0,113	
reference value	83,05	83,05	66	66	354,43		354,43	
distance of platforms to y	1225,388	315,401	903,023	201,048	749,067		232,854	
standard deviation	0,003	0,005	0,009	0,007	0,005		0,005	
deviation to reference value	-0,112	-0,1	0,023	0,048	-0,033		-0,046	
reference value	1225,5	315,5	903	201	749,1		232,9	
height of endcaps	373,83	373,878						
standard deviation	0,014	0,013						
deviation to reference value	0,158	0,206						
reference value	373,672	373,672						

Results for all platforms

- Platform positions are precise enough
- Only small deviations to the reference values

Torsion measurements

- After gluing of the chamber, the chamber is put out of the supporting structure
- Chambers now sag because of their own weight

Sagging of one layer

First step: Linear fit of the measured points of each layer

Second step: Rotation of the coordinate system to get the x-axis parallel to the linear fit of the measured points of each layer

Deviation of endcaps from nominal value

- Normally distributed
- Standard deviation of 10μm

Résumé

- 1. For the upgrade of the HL-LHC, additional RPCs will be installed in the inner barrel Layer of the muon spectrometer
- 2. MDTs will be replaced by smaller sMDTs
- 3. BIS78 chamber will be installed soon in the current shotdown
- 4. Currently preparing for the production of the BIS1-6 chambers
- 5. Mechanincal test of a BIS1 prototype chamber