Monitor Spectrometer Integration

ASSEMBLY AND HOLDING STRUCTURE
Reminder of 47 and 166 Channel Design

<table>
<thead>
<tr>
<th></th>
<th>47 Channel</th>
<th>166 Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>2020</td>
<td>202X</td>
</tr>
<tr>
<td>Mechanical design</td>
<td>Similar/same</td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td>Pixels in one corner</td>
<td>Uniform</td>
</tr>
<tr>
<td>Electronic Connections</td>
<td>1 ASIC Board, 2 Ribbon Cables</td>
<td>2 ASIC Boards, 4 Ribbon Cables</td>
</tr>
<tr>
<td>Sensors</td>
<td>-</td>
<td>Thermal Sensor</td>
</tr>
</tbody>
</table>

- **47 Channel**
 - 1 ASIC Board
 - 2 Ribbon Cables

- **166 Channel**
 - 2 ASIC Boards
 - 4 Ribbon Cables

- **Sensors**
 - Thermal Sensor

- **Diagram**
 - SDD Bonds
 - C-Shape Flex
 - ASIC Board
 - Ribbon connectors
 - 47 Channel
 - 166 Channel
Assembly Procedure in Moni-Spec

Idea: Assembly everything outside and then slide inwards
Assembly of the Module Top

- Top of Module assembly @ HLL clean room
- 4 steps cleaning procedure
 - Acetone, Propanol, distilled H20, N2
- Epotec 920 glue cured at 60°C for 5.5 h
- Bond connections made and tested on probing station
- Difficult to clean after assembly

Tested and Cleaned
Assembly of ASIC Board

- ASIC Board Assembled at Polimi
 - Soldering ASIC board
 - Cleaning in ultrasonic path
 - Bonding Ettore ASIC
 - N2 flushed sealed transportation bag

- Test functionality
- Shipped to MPP/KIT
- Difficult to clean after assembly

Tested and Cleaned
First Assembly and Calibration

• Assemble Module itself
• Connect C-Shape and ASIC board
• Testing and Calibration
 • Detector Response
 • Noise Curve
 • Stability over time/temperature
 • …
• Performed at MPP (KIT)

Tested and Calibrated
Attaching Vacuum Shield

- Vacuum shield
 - Reduce conductance between outgassing parts and spectrometer vessel

- Adjustable with screws
 - Finding the right spacing challenging
 -> Dummy test assembly

- Z variation ≈ 40 mm at vacuum seal
1. Preparation

- Support bellow tube
- Additional/removable mount for cooling structure
- Counter weight for stability
2. Installing Cables

- Connect vacuum connectors/cables to flange
- Temporary fix cables at heat exchange (guiding mount on holding structure possible)
3. Installing Module

- Installing module at heat exchange block
- Tried already and worked
4. Slide Insight

- Installing module at heat exchange block
- Remove additional flange mount
5. Outside Electronics

- Installing Bias board, DAQ etc.
Open Points

Holes or threads inside?
Slow control Sensors

• No thermal sensor currently for 47 Channel
• External Sensors possible?
• What could be useful?
 • Thermal (where?)
 • Magnetic
 • Calibration Source
 • Vibration
• Where to connect to?
Which tests should be performed?

- Vacuum shield spacing
- Characterization of Module
Backup
Holding Structure Design Modification

- Heat exchange out of OHFC
- Reduction piece out of stainless steel or aluminum
- Remove Swagelok Connectors
- Stainless steel Brackets instead of GFK ones
- Ventilation holes for Copper heat exchange screw
47 Channel Design Proposal

- Silicon **L-shape frame** with traces for **back-voltages**
- **Ring X pad** is in **top corner**
- **No thermal sensor** (No connection possible)
- **Assembly procedure stays the same** (only change baseplate)
1. Installing Holding Structure

- Install holding structure on movable desk
- Removed bellow tube
2. Installing Vacuum Cables

- Connect vacuum connectors/cables to flange
- Temporary fix cables at heat exchange
 (guiding mount on holding structure possible)
3. Installing Bellow Tube

➢ Slide the bellow tube over the holding structure
➢ Probably stabilization required
 (pull back and compensate gravity)
4. Installing Bellow Tube

➢ Mount module (vacuum shield mounted)
➢ Connect Cables
5. Installing Bellow Tube

➢ Probably: slightly move module inside cross
➢ Slide Bellow tube over Module and fix at cross
Position of Detector

• Current Design:
 • Distance to solenoid edge: \(\approx 230 \, mm \)
 • Flux Tube: \(\approx \varnothing 40 \, mm \)