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A motivating if pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer? )




A motivating if pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer? )

e sounds like an impossible task
e one observation x = 11 and two unknowns, ns,cks and npairs

e writing the likelihood is a challenge



Feller's shoes

A closet contains n pairs of shoes. If 2r shoes are chosen
at random (with 2r < n), what is the probability that
there will be (a) no complete pair, (b) exactly one

complete pair, (c) exactly two complete pairs among
them?

[Feller, 1970, Chapter Il, Exercise 26]



Feller's shoes

[Feller, 1970, Chapter Il, Exercise 26]

P = C) 2 (27 - J21> / @:)

being probability of obtaining js pairs among those 2r shoes, or for
an odd number t of shoes

w=23(0)(770) /(%)

Resolution as



Feller's shoes

[Feller, 1970, Chapter Il, Exercise 26]

If one draws 11 socks out of m socks made of f orphans and g
pairs, with f +2g = m, number k of socks from the orphan group
is hypergeometric .7#°(11, m, f) and probability to observe 11
orphan socks total is

= (D% 2 GE)

k=0 (1rr11) (112§k)




A prioris on socks

Given parameters ng,cks and npairs, set of socks

8 = {517 SLy- -+ S”pairs’ s”pairs’ Snpairs"!‘l? et Snsocks}

and 11 socks picked at random from S give X unique socks.



A prioris on socks

Given parameters ng,cks and npairs, set of socks

8 = {517 SLy- -+ Snpairs’ s”pairs’ Snpairs"!‘l? et Snsocks}

and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning

If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
Nsocks I'M going to use a negative binomial with mean 30 and
standard deviation 15.

On fpairs /2054 I'm going to put a Beta prior distribution that puts
most of the probability over the range 0.75 to 1.0,

v

[Rassmus B3ath's Research Blog, Oct 20th, 2014]



Simulating the experiment

Given a prior distribution on ns,cks and npairs,

Nsocks ~ N eg(30,15)

possible to

@ generate new values
of Nsocks and Npairs.

® generate a new
observation of X,
number of unique
socks out of 11.

npairs|”socks ~ socks/28e(15, 2)



Simulating the experiment

Given a prior distribution on ns,cks and npairs,
Nsocks ™~ Neg(30, 15) npairs|”socks ~ n5°°ks/2Be(157 2)

possible to

e generate new Va|UeS Prior on n_socks Resulting prior on n_pairs
of Nsocks and Npairs.

® generate a new

observation of X, e S
o 20 40 60 80 o 10 20 30 40
number of uniq ue Number of socks Number of sock pairs
SOCkS Out Of 11 Prior on prop_pairs Resulting prior on n_odd
© accept the pair
(nsocks: npairs) if the
r T T T 1 T T T T T 1
realisation Of X is 0.0 0.2 0.4 06 08 1.0 ] 5 10 15 20 25
Proportion of socks in pairs Number of odd socks

equal to 11



Meaning
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The outcome of this simulation method returns a distribution on
the pair (Nsocks, Npairs) that is the conditional distribution of the

pair given the observation X = 11
Generations from 7(Nsocks, Mpairs) are accepted with probability

P{X = 11|(nsock57 npairs)}



Meaning

D
0000 0005 0010 0015 0020 0025 0030
D¢
000 001 002 003 004 005 006

The outcome of this simulation method returns a distribution on
the pair (Nsocks, Npairs) that is the conditional distribution of the

pair given the observation X = 11
Hence accepted values distributed from

71'(nsockm npairs) X P{X = lll(nsockSa npairs)} = 7"'(nsocks, npairs|X = 11)



Econ’ections

@ simulation-based methods in
Econometrics




Usages of simulation in Econometrics

Similar exploration of simulation-based techniques in Econometrics

Simulated method of moments

Method of simulated moments

Simulated pseudo-maximum-likelihood

Indirect inference

[Gouriéroux & Monfort, 1996]



Simulated method of moments

Given observations y7, from a model

Yt = r(.yl:(t—l)vet)g)v €t Ng()

simulate €7.,,, derive

£ (0) = r(yae-1), €, 0)

and estimate 6 by

arg mmz NG



Simulated method of moments

Given observations y7, from a model
ye = r(yl:(tfl)v er,0), e ~g(:)
simulate €7.,,, derive
i (0) = r(ya(e-1), €, 0)

and estimate 6 by

n n 2
arg min {;yé’ —~ ;yt*w)}



Method of simulated moments

Given a statistic vector K(y) with

Eo[K(Y)ly1:(e-1)] = k(y1:(¢-1): 0)

find an unbiased estimator of k(yl:(t,l); 0),

k(Eta}’L(t—l); 0)
Estimate 0 by

n

D

t=1

arg min
& 0

S
NM—ZH%mmmW4

s=1

[Pakes & Pollard, 1989]



Indirect inference

Minimise (in #) the distance between estimators /3 based on
pseudo-models for genuine observations and for observations
simulated under the true model and the parameter 6.

[Gouriéroux, Monfort, & Renault, 1993;
Smith, 1993; Gallant & Tauchen, 1996]



Indirect inference (PML vs. PSE)

Example of the pseudo-maximum-likelihood (PML)

~

Bly) = argmax > _ log £*(vel 0, y(e-1))
t

leading to
argmin13(y°) = Bya(6). . ys(O)I

when
ys(6) ~ f(y|0) s=1,...,S



Indirect inference (PML vs.

Example of the pseudo-score-estimator (PSE)

2
Olog f*
[j = argmln {Z & )Q’ﬁ?)/l:(tl))}

leading to
argmm\lﬁ( °) = By1(0),- .., ys(9))II”

when

ys(0) ~ f(y|6) s=1,...,S

PSE)



Consistent indirect inference

...in order to get a unique solution the dimension of
the auxiliary parameter 3 must be larger than or equal to
the dimension of the initial parameter 0. If the problem is
just identified the different methods become easier...



Consistent indirect inference

...in order to get a unique solution the dimension of
the auxiliary parameter 8 must be larger than or equal to
the dimension of the initial parameter 6. If the problem is
just identified the different methods become easier...

Consistency depending on the criterion and on the asymptotic
identifiability of 6
[Gouriéroux, Monfort, 1996, p. 66]



AR(2) vs.

true (AR) model
Ve =€t —Oep 1

and [wrong!] auxiliary (MA) model

Ve = Bryi—1 + Bayr—2 + ur

R code

x=eps=rnorm(250)

x[2:2501=x[2:250]1-0.5%x[1:249]

simeps=rnorm(250)

propeta=seq(-.99,.99,1e=199)

dist=rep(0,199)

bethat=as.vector(arima(x,c(2,0,0),inc1=FALSE)$coef)

for (t in 1:199)
dist[t]=sum((as.vector(arima(c(simeps[1],simeps[2:250]-propeta[t]*
simeps[1:249]),c(2,0,0),incl=FALSE)$coef)-bethat) "2)

MA(1) example




AR(2) vs. MA(1) example

One sample:

0.6 0.8
I

distance

0.4

0.2
!

0.0
I




AR(2) vs. MA(1) example

Many samples:




Choice of pseudo-model

Pick model such that
® 5(0) not flat

(i.e. sensitive to changes in 6)
@ 5(0) not dispersed (i.e. robust agains changes in y*(f))
[Frigessi & Heggland, 2004]



ABC using indirect inference (1)

We present a novel approach for developing summary statistics
for use in approximate Bayesian computation (ABC) algorithms by
using indirect inference(...) In the indirect inference approach to
ABC the parameters of an auxiliary model fitted to the data become
the summary statistics. Although applicable to any ABC technique,
we embed this approach within a sequential Monte Carlo algorithm
that is completely adaptive and requires very little tuning(...)

[Drovandi, Pettitt & Faddy, 2011]

(© Indirect inference provides summary statistics for ABC...



ABC using indirect inference (2)

...the above result shows that, in the limit as h — 0, ABC will
be more accurate than an indirect inference method whose auxiliary
statistics are the same as the summary statistic that is used for
ABC(...) Initial analysis showed that which method is more
accurate depends on the true value of 0.

[Fearnhead and Prangle, 2012]

(© Indirect inference provides estimates rather than global inference...



Genetics of ABC

@® Genetics of ABC




Genetic background of ABC

ABC is a recent computational technique that only requires a
generative model, i.e., being able to sample from the density f(:|0)

This technique stemmed from population genetics models, about
15 years ago, and population geneticists still contribute
significantly to methodological developments of ABC.

[Griffith & al., 1997; Tavaré & al., 1999]



Population genetics

[Part derived from the teaching material of Raphael Leblois, ENS Lyon, November 2010]

e Describe the genotypes, estimate the alleles frequencies,
determine their distribution among individuals, populations
and between populations;

e Predict and understand the evolution of gene frequencies in
populations as a result of various factors.

(© Analyses the effect of various evolutive forces (mutation, drift,
migration, selection) on the evolution of gene frequencies in time
and space.



Generation

Wright-Fisher model

e A population of constant
size, in which individuals
reproduce at the same time.

e Each gene in a generation is

a copy of a gene of the
previous generation.

e |n the absence of mutation

and selection, allele
frequencies derive inevitably
until the fixation of an
allele.



Coalescent theory

[Kingman, 1982; Tajima, Tavaré, &tc]|

Généalogie de la population Généalogie d'un échantillon Le coalescent

00000QOO00 i MRCA

Temps

Coalescence theory interested in the genealogy of a sample of
genes back in time to the common ancestor of the sample.



Common ancestor

]

Time of coal

Loy

The different lineages merge when we go back in the past.



Neutral mutations

e Under the assumption of
neutrality, the mutations
are independent of the

a7 genealogy.

e We construct the genealogy
according to the
demographic parameters,

G T I G G G G G then we add a posteriori the

mutations.

MRCA
N



Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

Kingman’s genealogy
When time axis is

- MACA normalized,

T(k) ~ Exp(k(k—1)/2)




Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

M R‘CA
t

Kingman’s genealogy
When time axis is
normalized,

T(k) ~ Exp(k(k—1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)

e date of the mutations ~
Poisson process with
intensity 6/2 over the
branches



Neutral model at a given microsatellite locus, in a closed
panmictic population at equilibrium

M R‘CA
t
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Kingman’s genealogy
When time axis is
normalized,

T(k) ~ Exp(k(k—1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)

e date of the mutations ~
Poisson process with
intensity 6/2 over the
branches

e MRCA =100

e independent mutations:
+1 with pr. 1/2



Much more interesting models. . .

e several independent locus
Independent gene genealogies and mutations

o different populations
linked by an evolutionary scenario made of divergences,
admixtures, migrations between populations, selection
pressure, etc.

¢ larger sample size
usually between 50 and 100 genes



Available population scenarios

Between populations: three types of events, backward in time
e the divergence is the fusion between two populations,
e the admixture is the split of a population into two parts,

e the migration allows the move of some lineages of a
population to another.

Divergence Admixture Migration

Popl ¢

v
v T 1—r Lemen
—|[——

Loz

t t t

Popl Pop2 Popl Pop3  Pop2 Popl Pop2
(a) (b) (©



A complex scenario

The goal is to discriminate between different population scenarios
from a dataset of polymorphism (DNA sample) y observed at the
present time.




Demo-genetic inference

Each model is characterized by a set of parameters 8 that cover
historical (time divergence, admixture time ...), demographics
(population sizes, admixture rates, migration rates, ...) and genetic
(mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of
polymorphism (DNA sample) y observed at the present time

Problem: most of the time, we can not calculate the likelihood of
the polymorphism data f(y|60).



Untractable likelihood

Missing (too missing!) data structure:
f(v16) = [ fylG.0)(Glo)dG

The genealogies are considered as nuisance parameters.

This problematic thus differs from the phylogenetic approach
where the tree is the parameter of interesst.



A genuine example of application

a
BEZ ~

/Eﬁn/cameroon
6 CAR|-

Atlantic ¢
Ocean

Congo Crédit : Serge Bahuchet
R 604 individus, 12 populations non-pygmées, 9
o populations pygmées, 28 marqueurs
. " microsatelli
Pygmy peopling EZ Bongo
Baka Bezan

Population samples

®Pyomy  © Non-pygmy Verdu et al. (2009) Current Biology 19: 312-318

Pygmies populations: do they have a common origin? Is there a
lot of exchanges between pygmies and non-pygmies populations?



Scenarios under competition




Historical
scenario

5,000
simulations

closest

50,000 closest
simulations

Simulation results

Scenario 1a

0.9604 [0.9072 - 1.0000]

0.8806 [0.8518 - 0.9093)

Scenario 1b

0.0373 [0.0000 - 0.0906]

0.0994 [0.0703 - 0.1285]

Scenario 1c

0.0018 [0.0000 - 0.0038]

0.0142 [0.0111 - 0.0172)

Scenario 1d

0.0000 [0.0000 - 0.0000]

0.0010 [0.0000 - 0.0022]

Scenario 2a

0.0006 [0.0002 - 0.0008]

0.0049 [0.0041 - 0.0056]

Scenario 2b

0.0000 [0.0000 - 0.0000]

0.0000 [0.0000 - 0.0000]

Scenario 2c

0.0000 [0.0000 - 0.0000]

0.0000 [0.0000 - 0.0001]

Scenario 2d

0.0000 [0.0000 - 0.0000]

(© Scenario 1A is chosen.

0.0000 [0.0000 - 0.0000]

1

|
K> R e R |
Nop
NN N N
PO O

h Non-pygmy |

Pygmy
Baka, Bozan, Kola, Koya



TIME

Past

Most likely scenario

Ancestral w:mm Central Afican population

Ancestral pyamy / \ Dimorpicupanin
population
ancestral pyamy population
p'olo-nonpygmy" population
90,000-50,000 YBP
! > l
-

| |

2,800 YBP

Exublishmantof brrers
Pygmies g eromy pouiaions
' ' esch other

Present Situation

‘ —

mobility between

s l "
gene-flows from
non-pygmies
L) Kol enhance the
differentiation between
Pygmy populations

Koya




Instance of ecological questions

e How the Asian Ladybird
beetle arrived in Europe?

e Why does they swarm right 2
now? ‘

e What are the routes of 0
invasion?

e How to get rid of them? "“‘

[Lombaert & al., 2010, PLoS ONE]



Worldwide invasion routes of Harmonia Axyridis

P=0.803

10.616-1.000]

2001) -

£ P=0.982 o o
10.921-4,000] - A

P=0.991
10.980-1.000] P=0.951

4 0.819-1.000] u K
2001 2004 ==

For each outbreak, the arrow indicates the most likely invasion
pathway and the associated posterior probability, with 95% credible
intervals in brackets

[Estoup et al., 2012, Molecular Ecology Res.]



Worldwide invasion routes of Harmonia

NS
- NS,
- NS, = lan
- NS, bl
NS, -
- NS o =t
- S, E| =t
- NS, E| mmituyy
NF; B m—tu
8| —toc,
= the,
-
— -8,
- 57
Fop 5 - 50
Biocontrol  pop 4 I
(UB-US)  Biocontrol  pp 1 Pop 3 Pop 2
(EB-INRABT)  Native  Invasive  Native

(N-China2)  (I-ENA)  (N-Kaz)

Axyridis

For each outbreak, the arrow indicates the most likely invasion
pathway and the associated posterior probability, with 95% credible

intervals in brackets

[Estoup et al., 2012, Molecular Ecology Res.]



A population genetic illustration of ABC model choice

Two populations (1 and 2) having diverged at a fixed known time
in the past and third population (3) which diverged from one of
those two populations (models 1 and 2, respectively).

Observation of 50 diploid individuals/population genotyped at 5,
50 or 100 independent microsatellite loci.

MRCA

POP O POP 1 POP 2

Model 2



A population genetic illustration of ABC model choice

Two populations (1 and 2) having diverged at a fixed known time
in the past and third population (3) which diverged from one of
those two populations (models 1 and 2, respectively).

Observation of 50 diploid individuals/population genotyped at 5,
50 or 100 independent microsatellite loci.

Stepwise mutation model: the number of repeats of the mutated
gene increases or decreases by one. Mutation rate © common to all
loci set to 0.005 (single parameter) with uniform prior distribution

w ~ U4[0.0001,0.01]



A population genetic illustration of ABC model choice

Summary statistics associated to the (J,)? distance
x1,;j repeated number of allele in locus / =1,..., L for individual

i=1,...,100 within the population j =1,2,3. Then

100 100

11,12 L Z 100 Z X1 — 100 Z X1,i2,j

i1=1 =1



A population genetic illustration of ABC model choice

For two copies of locus / with allele sizes x;; ;, and x; 7 ;,, most
recent common ancestor at coalescence time 7}, ;,, gene genealogy
distance of 27; ;,, hence number of mutations Poisson with
parameter 247, j,. Therefore,

2
B {(X/,f,jl —%i15) !Tju'z} = 2uTjy

and
Model 1 Model 2

ES(0u)iop 2umt  2uat
E{(0u)isp 2t 2p0t’
E (%)5,3 21 t! 2uat




A population genetic illustration of ABC model choice

Thus,
e Bayes factor based only on distance (5“)%,2 not convergent: if
11 = 2, same expectation
o Bayes factor based only on distance (6,) 3 or (6,)3 5 not
convergent: if pu3 = 2up or 21 = i same expectation
e if two of the three distances are used, Bayes factor converges:
there is no (i1, p2) for which all expectations are equal



A population genetic illustration of ABC model choice

DM2(12)

o |

3

N [ e —

3

o |

g : - :
5 50 100

DM2(13)
@« 4
g _ - —_—
1 ———— - i -

< | - 1

3 : ! .

.7 :

° T T T
5 50 100

DM2(13) & DM2(23)

g

3 ;

3 '

o :

ot T T T
5 50 100

Posterior probabilities that the data is from model 1 for 5, 50
and 100 loci



Approximate Bayesian computation

© Approximate Bayesian computation
ABC basics
Alphabet soup
ABC as an inference machine
Automated summary statistic
selection
Series B discussion




Cases when the likelihood function
f(y|@) is unavailable and when the
completion step

f(yl6) = /g f(y.2]6) dz

is impossible or too costly because of
the dimension of z
(© MCMC cannot be implemented!

Untractable likelihoods



Cases when the likelihood function
f(y|@) is unavailable and when the
completion step

f(yl6) = /y f(y. 2/6) dz

is impossible or too costly because of
the dimension of z
(© MCMC cannot be implemented!

Untractable likelihoods




[[lustration

Example (Ising & Potts models)

Potts model: if y takes values on a grid ) of size k" and

f(y|@) o exp {0 ZH«W:)"}

I~i

where /~i denotes a neighbourhood relation, n moderately large
prohibits the computation of the normalising constant 3y




[[lustration

Example (Ising & Potts models)

Potts model: if y takes values on a grid ) of size k" and

f(y|@) o exp {0 ZH«W:)"}

I~i

where /~i denotes a neighbourhood relation, n moderately large
prohibits the computation of the normalising constant 3y

Special case of the intractable normalising constant, making the
likelihood impossible to compute



The ABC method

Bayesian setting: target is 7(6)f(x|0)



The ABC method

Bayesian setting: target is 7w(0)f(x|0)
When likelihood f(x|#) not in closed form, likelihood-free rejection
technique:



The ABC method

Bayesian setting: target is 7w(0)f(x|0)
When likelihood f(x|#) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ~ f(y|#), under the prior w(0), keep jointly

simulating
0" ~ m(0),z ~ f(z]0'),

until the auxiliary variable z is equal to the observed value, z =y.

v

[Tavaré et al., 1997]



Why does it work?!

The proof is trivial:

F(6:) oc Y m(6:)f(216))ly(2)

oc (0;)f(y|0:)
=7(0ily)-

[Accept—Reject 101]



Earlier occurrence

‘Bayesian statistics and Monte Carlo methods are ideally
suited to the task of passing many models over one
dataset’

[Don Rubin, Annals of Statistics, 1984]

Note Rubin (1984) does not promote this algorithm for
likelihood-free simulation but frequentist intuition on posterior
distributions: parameters from posteriors are more likely to be
those that could have generated the data.



A as A...pproximative

When y is a continuous random variable, equality z =y is replaced
with a tolerance condition,

o(y,z) <e

where o is a distance



A as A...pproximative

When y is a continuous random variable, equality z =y is replaced
with a tolerance condition,

o(y;z) < e

where o is a distance
Output distributed from

m(0) Po{o(y,z) < e} ocm(floly,z) <e)

[Pritchard et al., 1999]



ABC algorithm

Algorithm 1 Likelihood-free rejection sampler 2
for i =1to N do
repeat
generate 6’ from the prior distribution (-)
generate z from the likelihood f(-0")
until p{n(z),n(y)} <€
set 0, =0’
end for

where 7(y) defines a (not necessarily sufficient) statistic



Output

The likelihood-free algorithm samples from the marginal in z of:

m(0)f(2|0)Ia.,(2)

me(0,2]y) = ’
(6.2ly) Ja, xo ™(0)f(2|0)dzdd

where A.y = {z € D|p(n(z),n(y)) < €}.



Output

The likelihood-free algorithm samples from the marginal in z of:

— m(0)f(2]0)la. ,(2)
Ja,xo m(0)f(2]0)dzd6 ”

7T€(97 z\y)

where A.y = {z € D|p(n(z),n(y)) < €}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

T (0ly) = / 7(0, 2ly)dz ~ (dly)



Convergence of ABC (first attempt)

What happens when ¢ — 07



Convergence of ABC (first attempt)

What happens when ¢ — 07

If £(:|0) is continuous in y, uniformly in @ [!], given an arbitrary
6 > 0, there exists ¢y such that € < ¢p implies

0) [ f(@l0)la.,(2)dz _ 7r(9)f(y|9)(1¢5)u(%e)
waX@ 7(0)f(2|0)dzdo f@ m(0)F(y|0)dO(1 £ 5)u(B.)




Convergence of ABC (first attempt)

What happens when ¢ — 07

If £(-|@) is continuous in y, uniformly in é [!], given an arbitrary
6 > 0, there exists ¢p such that € < ¢g implies

0) ] f( z\G)HAey( z)dz - w(O)F(y|0)(1 F )R]
waxe (0)f(2]0)dzdd < Jo w(8)F(y[6)dO(1 = 0)EB)




Convergence of ABC (first attempt)

What happens when ¢ — 07

If £(-|@) is continuous in y, uniformly in @ [!], given an arbitrary
0 > 0, there exists €p such that € < ¢y implies

0) [ f(@l0)a.,(2)dz  w(0)f(y|6)(1 + o)Be)
Jacyxe m(0)f(2|0)dzdd — [ m(6)f (y|0)dO(1 + 6)pmtB]

[Proof extends to other continuous-in-0 kernels K]




Convergence of ABC (second attempt)

What happens when ¢ — 07



Convergence of ABC (second attempt)

What happens when ¢ — 07

For B C ©, we have

\H)dz B [5 (2/0)7(0)
/ fA z\e)dzda m(0)d0 = Ay Ta o TO)F(z |«9)dzd0 z

_ fB 6)do m(z) dz
Acy m(z) fAe,yxe 7(0)f(z|0)dzdd

[ (Bl m(z)
a /A (8 )fA ,xo T(0)f (20 6)dzds **

which indicates convergence for a continuous 7(B|z).



Probit modelling on Pima Indian women

Example (R benchmark)

200 Pima Indian women with observed variables
® plasma glucose concentration in oral glucose tolerance test
® diastolic blood pressure
® diabetes pedigree function
[ ]

presence/absence of diabetes




Probit modelling on Pima Indian women

Example (R benchmark)

200 Pima Indian women with observed variables
® plasma glucose concentration in oral glucose tolerance test
® diastolic blood pressure
® diabetes pedigree function
[ ]

presence/absence of diabetes

Probability of diabetes function of above variables

P(y = 1|x) = ®(x1 51 + x202 + x333) ,



Probit modelling on Pima Indian women

Example (R benchmark)

200 Pima Indian women with observed variables
® plasma glucose concentration in oral glucose tolerance test
® diastolic blood pressure
® diabetes pedigree function
[ ]

presence/absence of diabetes

Probability of diabetes function of above variables
P(y = 1|x) = ®(x1 81 + x22 + x33) ,

Test of Hp : 83 = 0 for 200 observations of Pima.tr based on a
g-prior modelling:

B ~ N3(0, n (xTX)—1>



Probit modelling on Pima Indian women

Example (R benchmark)

200 Pima Indian women with observed variables
® plasma glucose concentration in oral glucose tolerance test
® diastolic blood pressure
® diabetes pedigree function
[ ]

presence/absence of diabetes

Probability of diabetes function of above variables
P(y = 1|x) = ®(x1 81 + x22 + x33) ,

Test of Hp : 83 = 0 for 200 observations of Pima.tr based on a
g-prior modelling:

B ~ N3(0, n (xTX)—1>

Use of importance function inspired from the MLE estimate
distribution
B~N(B,X)



Pima Indian benchmark

Figure: Comparison between density estimates of the marginals on 3;
(left), B2 (center) and B3 (right) from ABC rejection samples (red) and
MCMC samples (black)



Back to the MA(q) model

q
Xt = €t + E Vi€r—j
i=1

Simple prior: uniform over the inverse

under the identifiability conditions

MA example

roots in



MA example

Back to the MA(g) model

q
Xt = €t + E Vi€
i=1

Simple prior: uniform prior over the identifiability zone, e.g.
triangle for MA(2)



MA example (2)

ABC algorithm thus made of
@ picking a new value (¢1,12) in the triangle
@® generating an iid sequence (€¢)_q<i<T

©® producing a simulated series (x;)1<t<T



MA example (2)

ABC algorithm thus made of
@ picking a new value (¢1,12) in the triangle
@® generating an iid sequence (€¢)_q<i<T
©® producing a simulated series (x;)1<t<T

Distance: basic distance between the series

T

p((Dr<e<, ()1<e<) = D> (xe — x0)°

t=1

or distance between summary statistics like the g autocorrelations



Comparison of distance impact

Evaluation of the tolerance on the ABC sample against both
distances (e = 100%, 10%, 1%, 0.1%) for an MA(2) model



Comparison of distance impact
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Evaluation of the tolerance on the ABC sample against both
distances (e = 100%, 10%, 1%, 0.1%) for an MA(2) model



Comparison of distance impact

| J\

T T T T T
00 02 04 o.6 o8 -2 0.0 05 1.0 15

Evaluation of the tolerance on the ABC sample against both
distances (e = 100%, 10%, 1%, 0.1%) for an MA(2) model



Homonomy

The ABC algorithm is not to be confused with the ABC algorithm

The Artificial Bee Colony algorithm is a swarm based meta-heuristic
algorithm that was introduced by Karaboga in 2005 for optimizing
numerical problems. It was inspired by the intelligent foraging
behavior of honey bees. The algorithm is specifically based on the
model proposed by Tereshko and Loengarov (2005) for the foraging
behaviour of honey bee colonies. The model consists of three
essential components: employed and unemployed foraging bees, and
food sources. The first two components, employed and unemployed
foraging bees, search for rich food sources (...) close to their hive.
The model also defines two leading modes of behaviour (...):
recruitment of foragers to rich food sources resulting in positive
feedback and abandonment of poor sources by foragers causing
negative feedback.

[Karaboga, Scholarpedia]



ABC R packages

Name References Stand-alone Platform Models

abc Csilléry et al. (2012) No (R package) All General

ABCreg Thornfon (2009) es Linux, 05 X General

easyABC Jabot et al. (2013) No (R package) All General

ABCtoolbox Wegmann et al. (2010) Yes Linux, Windows ~ Genetics

Bayes-SSC Anderson et al. (2005) Yes 1 Genetics

DIY-ABC Cornuet et al. (2008, 2010,2014)  Yes All Genetics

msBayes Hickerson et al. (2007) Yes Linux, 05 X Genetics

MTML-msBayes  Huang ctal. (2011) Yes Linux, 0S X Genetics

onesamp Tallmon et al. (2008) Yes (web interface) Al Genetics

PopABC Lopes et al. (2009) Yes All Genetics

REJECTOR Jobin and Mountain (2008) Yes All Genetics

EP-ABC Barthelmé and Chopin (2014) No (MATLAB tool- All State space models

(and related)

ABC-SDE Picchini (2013) No (MATL/\B tool- All Stochastic differen-
box) tial equations

ABC-SysBio Liepe etal. (2010) Yes (Python scripts) Al Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

e abc version 2.1

e abctools version 1.1.1

e abcrf version 1.7

[Csilléry et al.,
[Nunes & Prangle,

[Marin et al.,

2015]
2017]

2017]
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Simulating from the prior is often poor in efficiency
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Either modify the proposal distribution on 6 to increase the density
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...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger €
[Beaumont et al., 2002]



ABC advances

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on 6 to increase the density
of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger €
[Beaumont et al., 2002]

..... or even by including € in the inferential framework
[Ratmann et al., 2009]



ABC-NP

Better usage of [prior] simulations by
adjustement: instead of throwing away

0’ such that p(1)(2),7(y)) > €, replace g
6's with locally regressed transforms L—
0" =0 — {n(z) —n(y)}' 5 [Csilléry et al., TEE, 2010]
where BA is obtained by weighted least square regression on

(n(z) — n(y)) with weights
Ks {p(n(z),n(y))}

[Beaumont et al., 2002, Genetics]



ABC-NP (regression)

Also found in the subsequent literature, e.g. in
weight directly simulation by

Ks {p(n(z(0)),n(y))}

or

S
& D2 K5 (o= (@). 1)
s=1

[consistent estimate of f(7|0)]



ABC-NP (regression)

Also found in the subsequent literature, e.g. in
weight directly simulation by

Ks {p(n(z(0)),n(y))}

S
& D2 K5 (o= (@). 1)
s=1

[consistent estimate of f(7|0)]
Curse of dimensionality: poor estimate when d = dim(7n) is large...



ABC-NP (density estimation)

Use of the kernel weights

Ks {p(n(z(0)),n(y))}

leads to the NP estimate of the posterior expectation

> 0iKs {p(n(z(05)), n(y))}
> Ks {p(n(z(0:)),n(y))}

[Blum, JASA, 2010]




ABC-NP (density estimation)

Use of the kernel weights

Ks {p(n(z(9)),n(y))}

leads to the NP estimate of the posterior conditional density

S2: Ko(0; — 0)Ks {p(n(z(67)), n(y))}
> Ks {p(n(z(0:)),n(y))}

[Blum, JASA, 2010]




ABC-NP (density estimations)

Other versions incorporating regression adjustments

>2 Ku(07 — 0)Ks {p(n(2(6:)), n(y))}
> Ks {p(n(z(0:)), n(y))}




ABC-NP (density estimations)

Other versions incorporating regression adjustments

> Ko(07 — 0)Ks {p(n(z(6:)), n(y))}
22 Ks {p(n(z(6:)),1(y))}

In all cases, error
E[g(0]y)] — g(Aly) = cb? + c62 + Op(b? + 62) + Op(1/ns9)
var(g(0ly)) = — (1 + 0p(1)

[Blum, JASA, 2010]



ABC-NP (density estimations)

Other versions incorporating regression adjustments

> Ko(07 — 0)Ks {p(n(z(6:)), n(y))}
22 Ks {p(n(z(6:)),1(y))}

In all cases, error
E[z(0ly)] — g(0ly) = cb® + c6® + Op(b? + 6%) + Op(1/nd?)
var(g(6ly)) = — (1 + 0p(1))

[standard NP calculations]



ABC-NCH

Incorporating non-linearities and heterocedasticities:

0* = m(n(y)) + [0 — m(n(z))]




ABC-NCH

Incorporating non-linearities and heterocedasticities:

where
e rfi(n) estimated by non-linear regression (e.g., neural network)

e §(n) estimated by non-linear regression on residuals

log{0; — (n;)}*> = log o*(mi) + &
[Blum & Frangois, 2009]



ABC-NCH (2)

Why neural network?



ABC-NCH (2)

Why neural network?

fights curse of dimensionality

selects relevant summary statistics

e provides automated dimension reduction

offers a model choice capability

e improves upon multinomial logistic

[Blum & Francois, 2009]



ABC as knn

[Biau et al., 2013, Annales de I'lHP]

Practice of ABC: determine tolerance € as a quantile on observed
distances, say 10% or 1% quantile,
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[Biau et al., 2013, Annales de I'lHP]

Practice of ABC: determine tolerance € as a quantile on observed
distances, say 10% or 1% quantile,

6:EN:qCM(dlw"de)

e Interpretation of € as nonparametric bandwidth only
approximation of the actual practice
[Blum & Francois, 2010]



ABC as knn

[Biau et al., 2013, Annales de I'lHP]

Practice of ABC: determine tolerance € as a quantile on observed
distances, say 10% or 1% quantile,

6:EN:qCM(dlw"de)

e Interpretation of € as nonparametric bandwidth only
approximation of the actual practice
[Blum & Francois, 2010]

e ABC is a k-nearest neighbour (knn) method with ky = Ney
[Loftsgaarden & Quesenberry, 1965]



ABC consistency
Provided
kn/loglogN — oo and  ky/N — 0

as N — oo, for almost all sy (with respect to the distribution of
S), with probability 1,

kn
> el) — Elp(6)lS = s

Jj=1

[Devroye, 1982]



ABC consistency
Provided
kn/loglogN — oo and  ky/N — 0

as N — oo, for almost all sy (with respect to the distribution of
S), with probability 1,

kn
LS 0(607) — Blp(0)1S = o]

k
N

[Devroye, 1982]

Biau et al. (2013) also recall pointwise and integrated mean square error
consistency results on the corresponding kernel estimate of the
conditional posterior distribution, under constraints

kNHOO, k/\//N%O, hy — 0 and hﬁlkN—)DO,



Rates of convergence

Further assumptions (on target and kernel) allow for precise
(integrated mean square) convergence rates (as a power of the
sample size N), derived from classical k-nearest neighbour
regression, like

e when m=1,2,3, ky ~ NPT4)/(P+8) 3nd rate N Fie
o when m = 4, ky ~ N(P+t9/(P+8) and rate N b log N
e when m > 4, ky ~ N(PT4/(m+pF4) and rate N~ st

[Biau et al., 2013]



Rates of convergence

Further assumptions (on target and kernel) allow for precise
(integrated mean square) convergence rates (as a power of the
sample size N), derived from classical k-nearest neighbour
regression, like

e when m=1,2,3, ky ~ NPT4)/(P+8) 3nd rate N Fie
o when m = 4, ky ~ N(P+t9/(P+8) and rate N b log N
e when m > 4, ky ~ N(PT4/(m+pF4) and rate N~ st

[Biau et al., 2013]

Only applies to sufficient summary statistics



How Bayesian is ABC..?

may be a convergent method of inference (meaningful?
sufficient? foreign?)

approximation error unknown (w/o massive simulation)
pragmatic/empirical B (there is no other solution!)

many calibration issues (tolerance, distance, statistics)

the NP side should be incorporated into the whole B picture

the approximation error should also be part of the B inference



ABC-MCMC

Markov chain (6()) created via the transition function

0 ~ K, (0'16) if x ~ f(x|@) is such that x = y

1 m(0') K (69) |6/
pt+1) — and UNU(O,I)SWv

(1) otherwise,



ABC-MCMC

Markov chain (6()) created via the transition function

0 ~ K, (0'16) if x ~ f(x|@) is such that x = y

1 m(0') Ko (0|0
pt+1) — and UNU(O,I)SWv

(1) otherwise,

has the posterior m(f|y) as stationary distribution
[Marjoram et al, 2003]



ABC-MCMC (2)

Algorithm 2 Likelihood-free MCMC sampler
Use Algorithm 1 to get (A(?),z(9)
for t =1to N do
Generate 0/ from K, (-|0(t=1)),
Generate Z' from the likelihood £(-|6),
Generate u from Ug 1,

. (0" K., (00—1)16) /
if u< 7r(6)(t71)’<w(9,‘9(t71))]IAe’y(z ) then

set (09, 2(1)) = (¢/,2))
else
(g(t),z(t))) — (g(t—l)jz(t—l))'
end if
end for




Why does it work?

Acceptance probability does not involve calculating the likelihood
and

n(0.2ly) (6o V]et )
r(6 D 2Dy T q(@6C )0
n(8') F46Y L., (2)

- (0 DY) L, (27)
q(e(t—l)‘a/) f(z(tfl)‘e(t—l))
q(0'16\ V) Frz44e]




Why does it work?

Acceptance probability does not involve calculating the likelihood
and

m(0.7ly) q(0 |0 f (2t Do+ D))
T (0D, 2(t-D)y) q(6'le(~V)f(z|0")
7(0') FHZHE 14, ,(2)
(0U1) FZtE=H N 1, (2(tD)
( (1)) Fz=e=1)

q(0'16\ V) Frz44e]



Why does it work?

Acceptance probability does not involve calculating the likelihood
and

(0. 2ly) g6 Ve)f (et Y)
me (01D (=) y) q(0'16")f(2/|0)
B n(0)) 246 1a, ,(2)
(00 FAEHT) [ el
a0 e)) Fzt=ie D)
q(0'16\~ 1)) Fz448’)
CALICARRILD

= I !
(6N g(0'|6(t1) Ay (Z)




ABC,

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density

F(0, ely) oc E(ely, 0) x mp(0) x me(e)

where y is the data, and £(ely, 6) is the prior predictive density of
p(n(z),n(y)) given 6 and y when z ~ f(z|6)



ABC,

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density
(0, ¢ely) o< &(ely, 0) x mp(0) x me(e)

where y is the data, and £(ely, 6) is the prior predictive density of

p(n(z),n(y)) given 6 and y when z ~ f(z|6)
Warning! Replacement of {(e|y, #) with a non-parametric kernel

approximation.



ABC,, details

Multidimensional distances px (k =1,...,K) and errors
ek = pr(nk(z), k(y)), with

ek ~ Ex(ely, 0) = Ek(ely. 0) = Blhk > Kl{ex—px(k(s), mk(¥))}/hil
b

then used in replacing &(ely, 0) with minkék(e|y,9)



ABC,, details

Multidimensional distances px (k =1,...,K) and errors
ek = pr(nk(z), k(y)), with

ek ~ Ex(ely, 0) = Ek(ely. 0) = Blhk > Kl{ex—px(k(s), mk(¥))}/hil
b

then used in replacing &(ely, 0) with minkék(e|y,9)
ABC,, involves acceptance probability

(0, ¢) q(0',0)q(€, €) ming &k (]y, )
(6,€) a(0,6")a(e, €) min Ei(ely, 0)




ABC,, multiple errors

W chain 1 O chain 1
| chain2 @ chain2
| chain 3 ® chain3
B chain4 B chain4
~ PAPr o
& P A
L | DDA+ _| _A
T T T T T
4 2 0 2 4

PA

DD+ Z §
 LNK+ —

PA

— = -2 -1 0 1 2 3
e(ND, ¢(ODBOX)

[© Ratmann et al., PNAS, 2009]



ABC,, for model choice

A i 2e0esiyll
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[© Ratmann et al., PNAS, 2009]



Questions about ABC,,

For each model under comparison, marginal posterior on € used to
assess the fit of the model (HPD includes 0 or not).



Questions about ABC,,

For each model under comparison, marginal posterior on € used to
assess the fit of the model (HPD includes 0 or not).
e |s the data informative about €7
e How is the prior m(€e) impacting the comparison?
e How is using both £(¢e|xp, 8) and 7¢(€) compatible with a
standard probability model?
e Where is the penalisation for complexity in the model

comparison?

[X, Mengersen & Chen, 2010, PNAS]



A PMC version

Use of the same kernel idea as ABC-PRC (Sisson et al., 2007) but
with IS correction
Generate a sample at iteration t by

e(t Zw(t 1) 9(t 9(t 1))

modulo acceptance of the associated x;, and use an importance

(t)

weight associated with an accepted simulation 6;

W o (81 /2:(6).

]

[Beaumont et al., 2009]



ABC-PMC algorithm

Given a decreasing sequence of approximation levels €; > ... > e,

1. At iteration t =1,
Fori=1,...N
Simulate 9,(1) ~ m(#) and x ~ f(x|9f1)) until o(x,y) < &1
Set wfl) =1/N
Take 72 as twice the empirical variance of the 9,(1)'5

2. Atiteration2 <t < T,
Fori=1,...,N, repeat
Pick 6; from the 61 "'s with probabilities w{* ")
generate 9ft)|0,* ~ N(8F,02) and x ~ f(x|9§t))
until o(x,y) < €
Set wf? o n(01)/ L, i i (o {01 — 0 )})

Take 72, as twice the weighted empirical variance of the Hgt)’s



Sequential Monte Carlo

SMC is a simulation technique that approximates a sequence of
related probability distributions 7, with my “easy” and w7 as
target.

Iterated IS as PMC: particles moved from time n to time n via
kernel K, and use of a sequence of extended targets 7,

Tn(20:n) = mn(zn) H Lj(zj-i—la Zj)
j=0

where the L;’s are backward Markov kernels

[Del Moral, Doucet & Jasra, Series B, 2006]



Sequential Monte Carlo (2)

Algorithm 3 SMC sampler

sample 2% ~ yo(x) (i =1,...,N)

compute weights WI-(O) = 770(21.(0))/70(2,.(0))
for t =1to N do
if ESS(w(t~1)) < Nt then
resample N particles z(t=1) and set weights to 1
end if
generate zi(t*l) ~ Kt(z,-(tfl), -) and set weights to

© _ e me(@Z)Lea(E?), 2 )
w. = W,'_]_ (t*l) (t*l) (T_')
7Tt—1(Zi ))Kt(Z,- ), z )

]

end for

[Del Moral, Doucet & Jasra, Series B, 2006]



ABC-SMC

[Del Moral, Doucet & Jasra, 2009]

True derivation of an SMC-ABC algorithm

Use of a kernel K|, associated with target 7, and derivation of the
backward kernel

e, (2 )Kn(Z', 2)

Ln—l(zvzl) = 7Tn(Z)

Update of the weights

M
Zm:l ]IAe,, (Xir:)

i la, (X))

Win X Wi(p—1)

when x7' ~ K(x,-(,,_l), )



ABC-SMCy

Modification: Makes M repeated simulations of the pseudo-data z
given the parameter, rather than using a single [M = 1] simulation,
leading to weight that is proportional to the number of accepted
Z;S

LM
w(t) = v Z Lon(y) m(zi))<e
i=1



Properties of ABC-SMC

The ABC-SMC method properly uses a backward kernel L(z,z’) to
simplify the importance weight and to remove the dependence on
the unknown likelihood from this weight. Update of importance
weights is reduced to the ratio of the proportions of surviving
particles

Major assumption: the forward kernel K is supposed to be invariant
against the true target



Properties of ABC-SMC

The ABC-SMC method properly uses a backward kernel L(z,z’) to
simplify the importance weight and to remove the dependence on
the unknown likelihood from this weight. Update of importance
weights is reduced to the ratio of the proportions of surviving
particles

Major assumption: the forward kernel K is supposed to be invariant
against the true target

Adaptivity in ABC-SMC algorithm only found in on-line
construction of the thresholds ¢;, slowly enough to keep a large
number of accepted transitions



A mixture example (2)

Recovery of the target, whether using a fixed standard deviation of
7 =0.15 or 7 = 1/0.15, or a sequence of adaptive 7¢'s.




Wilkinson's exact BC

ABC approximation error (i.e. non-zero tolerance) replaced with
exact simulation from a controlled approximation to the target,
convolution of true posterior with kernel function

_ m(0)f(zl9)Kc(y — 2)
me(0,2]y) = [ m(0)f(z|0)K.(y — z)dzdO ’

with K kernel parameterised by bandwidth .
[Wilkinson, 2008]



Wilkinson's exact BC

ABC approximation error (i.e. non-zero tolerance) replaced with
exact simulation from a controlled approximation to the target,
convolution of true posterior with kernel function

_ m(0)f(zl9)Kc(y — 2)
me(0,2]y) = [ m(0)f(z|0)K.(y — z)dzdO ’

with K kernel parameterised by bandwidth .
[Wilkinson, 2008]

Theorem

The ABC algorithm based on the assumption of a randomised
observationy =y + &, € ~ K., and an acceptance probability of

Ky —z)/M

gives draws from the posterior distribution mw(f|y).




How exact a BC?

“Using € to represent measurement error is
straightforward, whereas using ¢ to model the model
discrepancy is harder to conceptualize and not as
commonly used”

[Richard Wilkinson, 2008, 2013]



How exact a BC?

Pros

e Pseudo-data from true model and observed data from noisy
model

o Interesting perspective in that outcome is completely
controlled

e Link with and assuming y is observed with a
measurement error with density K

e Relates to the theory of model approximation
[Kennedy & O’'Hagan, 2001]

Cons
e Requires K. to be bounded by M
e True approximation error never assessed

e Requires a modification of the standard ABC algorithm



Noisy ABC

Idea: Modify the data from the start
y=y0+eq
with the same scale € as ABC

run ABC on y



Noisy ABC

Idea: Modify the data from the start
y=y0+€eQ

with the same scale ¢ as ABC
[ ]
run ABC on y
Then ABC produces an exact simulation from 7(0|y) = 7(60|y)
[Dean et al., 2011; Fearnhead and Prangle, 2012]



Consistent noisy ABC

e Degrading the data improves the estimation performances:
e Noisy ABC-MLE is asymptotically (in n) consistent
e under further assumptions, the noisy ABC-MLE is
asymptotically normal

e increase in variance of order ¢ =2

e likely degradation in precision or computing time due to the
lack of summary statistic [curse of dimensionality]



Semi-automatic ABC

Fearnhead and Prangle (2010) study ABC and the selection of the
summary statistic in close proximity to

ABC then considered from a purely inferential viewpoint and
calibrated for estimation purposes

Use of a randomised (or ‘noisy’) version of the summary statistics

ii(y) = n(y) + 7e

Derivation of a well-calibrated version of ABC, i.e. an algorithm
that gives proper predictions for the distribution associated with
this randomised summary statistic



Semi-automatic ABC

Fearnhead and Prangle (2010) study ABC and the selection of the
summary statistic in close proximity to

ABC then considered from a purely inferential viewpoint and
calibrated for estimation purposes

Use of a randomised (or ‘noisy’) version of the summary statistics

ii(y) = n(y) + 7e

Derivation of a well-calibrated version of ABC, i.e. an algorithm
that gives proper predictions for the distribution associated with
this randomised summary statistic



Summary statistics

o Optimality of the posterior expectation E[f]y] of the
parameter of interest as summary statistics 7(y)!



Summary statistics

o Optimality of the posterior expectation E[f]y] of the
parameter of interest as summary statistics 7(y)!

e Use of the standard quadratic loss function

(6 — 60)TA(0 — ) .



Details on Fearnhead and Prangle (F&P) ABC

Use of a summary statistic S(-), an importance proposal g(-), a
kernel K(-) <1 and a bandwidth h > 0 such that

(05 YSim) ~ g(e)f(YSlm‘g)
is accepted with probability (hence the bound)
K[{S(ysim) - sobS}/h]

and the corresponding importance weight defined by

m(0)/&(0)
[Fearnhead & Prangle, 2012]



Errors, errors, and errors

Three levels of approximation
o 1(0|yobs) by (0|sobs) loss of information
[ignored]
o 7(0|sops) by

T (9’5 ) — f 71-(S)K[{S - sobs}/h]ﬂ'(ms) ds
ABC obs) — f TF(S)K[{S — sobs}/h] i

noisy observations

o maBc(0|sobs) by importance Monte Carlo based on N
simulations, represented by var(a(6)|Sobs),/ Nacc

[M. Twain/B. Disraeli]



Average acceptance asymptotics

For the average acceptance probability /approximate likelihood

p(msobs) = / f(YSim‘Q) K[{S(YSEm) - Sobs}/h] dYSim 5

overall acceptance probability
P(Sops) = / P(6]50me) 7(8) 6 = (s0me) A + o(h°)

[F&P, Lemma 1]



Optimal importance proposal

Best choice of importance proposal in terms of effective sample size
87 (0sobs) x 7T(e)p(msobs)lp

[Not particularly useful in practice]



Optimal importance proposal

Best choice of importance proposal in terms of effective sample size
87 (0sobs) x 7"-(‘g)p(‘9|sobs)l/2

[Not particularly useful in practice]

e note that p(f|sops) is an approximate likelihood
e reminiscent of parallel tempering

e could be approximately achieved by attrition of half of the
data



Calibration of h

“This result gives insight into how S(-) and h affect the Monte
Carlo error. To minimize Monte Carlo error, we need h? to be not
too small. Thus ideally we want S(-) to be a low dimensional
summary of the data that is sufficiently informative about 0 that
m(0|sobs) is close, in some sense, to w(0|yobs)” (F&P, p.5)

turns h into an absolute value while it should be
context-dependent and user-calibrated

only addresses one term in the approximation error and
acceptance probability (“curse of dimensionality”)

h large prevents magc(60|Sobs) to be close to 7(60|sobs)

d small prevents 7(0|sops) to be close to m(0|yops) (“curse of
[dis]information™)



Calibrating ABC

“If wagc is calibrated, then this means that probability statements
that are derived from it are appropriate, and in particular that we
can use wagc to quantify uncertainty in estimates” (F&P, p.5)



Calibrating ABC

“If wagc is calibrated, then this means that probability statements
that are derived from it are appropriate, and in particular that we
can use wagc to quantify uncertainty in estimates” (F&P, p.5)

Definition
For 0 < g < 1 and subset A, event E;(A) made of sgps such that
Pragc(0 € Alsobs) = g. Then ABC is calibrated if

Pr(0 € AlEq(A)) = q

e unclear meaning of conditioning on E4(A)



Theorem (F&P)
Noisy ABC, where

Sobs = S(Yobs) + he, €~ K()

is calibrated

Calibrated ABC

v

[Wilkinson, 2008]
no condition on Al!



Calibrated ABC

Consequence: when h = 0o

Theorem (F&P) J

The prior distribution is always calibrated

is this a relevant property then?



More about calibrated ABC

“Calibration is not universally accepted by Bayesians. It is even more
questionable here as we care how statements we make relate to the
real world, not to a mathematically defined posterior.” R. Wilkinson

Same reluctance about the prior being calibrated
Property depending on prior, likelihood, and summary
Calibration is a frequentist property (almost a p-value!)
More sensible to account for the simulator’s imperfections

than using noisy-ABC against a meaningless based measure

[Wilkinson, 2012]



Converging ABC

Theorem (F&P)
For noisy ABC, the expected noisy-ABC log-likelihood,

E {log[p(6]sabs)]} = / / 108[p(0]S (ab) + €)1 (Yobs 00) K (¢)dyapsde,

has its maximum at 6 = 6.

v

True for any choice of summary statistic? even ancilary statistics?!
[Imposes at least identifiability...]
Relevant in asymptotia and not for the data



Converging ABC

Corollary

For noisy ABC, the ABC posterior converges onto a point mass on
the true parameter value as m — oo.

For standard ABC, not always the case (unless h goes to zero).

Strength of regularity conditions (c1) and (c2) in Bernardo
& Smith, 19947

[out-of-reach constraints on likelihood and posterior]
Again, there must be conditions imposed upon summary
statistics...



Loss motivated statistic

Under quadratic loss function,

Theorem (F&P)

(i) The minimal posterior error E[L(6),0)|yops] occurs when
0 =E(0yobs) (!)
(i) When h — 0, Eagc(0]sobs) converges to E(6|yobs)
(iii) If S(Yobs) = E[0]yobs] then for § = Eagc[f]Sobs]

E[L(6, §)|yobs] = trace(AL) + hz/xTAxK(x)dx + o(h?).

v

measure-theoretic difficulties?

dependence of sgps on h makes-me-uneomfortable inherent to noisy
ABC
Relevant for choice of K?



Optimal summary statistic

“We take a different approach, and weaken the requirement for
magc to be a good approximation to 7(0|yops). We argue for mwagc
to be a good approximation solely in terms of the accuracy of
certain estimates of the parameters.” (F&P, p.5)

From this result, F&P

e derive their choice of summary statistic,

S(y) = E(dly)

[almost sufficient]

® suggest
h=O(N"YC+)y and h=O(N~YE+d)

as optimal bandwidths for noisy and standard ABC.



Optimal summary statistic

“We take a different approach, and weaken the requirement for
magc to be a good approximation to 7(0|yops). We argue for mwagc
to be a good approximation solely in terms of the accuracy of
certain estimates of the parameters.” (F&P, p.5)

From this result, F&P

e derive their choice of summary statistic,
S(y) =E(fly)

[WOW! ]EA_Bg[Q‘S(yObs)] = E[HWObs]]
e suggest

h=O(NYCH)) and h=O(N"V/(+d)

as optimal bandwidths for noisy and standard ABC.



Caveat

Since E(0|yops) is most usually 7
unavailable, F&P suggest e
(i) use a pilot run of ABC to Monte Tarl
determine a region of st
non-negligible posterior mass; Freed from likelihood!!!
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Caveat

Since E(0|yops) is most usually 7 '
unavailable, F&P suggest e

(i) use a pilot run of ABC to mﬂntf (llarl]

determine a region of iy
non-negligible posterior mass; Freed from likelihood!!!

.. . Licelihond has abways most importent difficulties  Ren
(ii) simulate sets of parameter b etk b e gl
Zfes and now that we can mp

. do  without it many The diffusion of the ABC
Va|ueS and data, S L e technology hes however The
vecuum created by this  been met with lukewarm that
liberation. Othermutteritis enthusiasm by  other rela

(III) use the Si mu |ated sets Of anything but a Lberation, membess of the community the

as we now report from andthe whole Monte Cartlo  heh

Monte Carlo country has not yet been  ofa

parameter values and data to s

Ten yems sgo, gensticists cresd, Thay wil however ki

. b~ came with s fechunque they  be  heudpressed when s

estimate the summary StatIStIC, called ABC. Thenks tothis Faced with problems they beh

mimeulons recipe, they camnot solve othenrise con

and were able to overcome the One deerly hopes this orv
dependence of similsion sesistance to  progiess

methods on the does not lead to a schism Itm

. . . . computation  of  the by Hlelihoodists, or worse tots
(iv) run ABC with this choice of el Ml T 1 i Cebtomn o
o overcome one of the sabotage ABCI dec

summary statistic.
where is the assessment of the first stage error?



[my]questions about semi-automatic ABC

dependence on h and S(-) in the early stage
reduction of Bayesian inference to point estimation
approximation error in step (i) not accounted for
not parameterisation invariant

practice shows that proper approximation to genuine posterior
distributions stems from using a (much) larger number of
summary statistics than the dimension of the parameter

the validity of the approximation to the optimal summary
statistic depends on the quality of the pilot run

important inferential issues like model choice are not covered
by this approach.

[Robert, 2012]



[my]questions about semi-automatic ABC

dependence on h and S(-) in the early stage
reduction of Bayesian inference to point estimation
approximation error in step (i) not accounted for
not parameterisation invariant

practice shows that proper approximation to genuine posterior
distributions stems from using a (much) larger number of
summary statistics than the dimension of the parameter

the validity of the approximation to the optimal summary
statistic depends on the quality of the pilot run

important inferential issues like model choice are not covered
by this approach.

X, 2012 ]



More about semi-automatic ABC

[ derived from comments on Read Paper, Series B, 2012]

“The apparently arbitrary nature of the choice of summary statistics
has always been perceived as the Achilles heel of ABC.” M.
Beaumont



More about semi-automatic ABC

[ derived from comments on Read Paper, Series B, 2012]

“The apparently arbitrary nature of the choice of summary statistics
has always been perceived as the Achilles heel of ABC.” M.
Beaumont

“Curse of dimensionality” linked with the increase of the
dimension of the summary statistic

Connection with principal component analysis
[Itan et al., 2010]
Connection with partial least squares
[Wegman et al., 2009]

Beaumont et al. (2002) postprocessed output is used as input
by F&P to run a second ABC



Wood's alternative

Instead of a non-parametric kernel approximation to the likelihood
1
5 2 Kelnlyr) —n(y*™)}
r

Wood (2010) suggests a normal approximation

n(y(6)) ~ Na(pe, Zo)

whose parameters can be approximated based on the R simulations
(for each value of 0).



Wood's alternative

Instead of a non-parametric kernel approximation to the likelihood
1
5 2 Kelnlyr) —n(y*™)}
r

Wood (2010) suggests a normal approximation

n(y(6)) ~ Na(pe, Zo)

whose parameters can be approximated based on the R simulations
(for each value of 6).

e Parametric versus non-parametric rate [Uh7!]

e Automatic weighting of components of n(-) through Xy

¢ Dependence on normality assumption (pseudo-likelihood?)

[Cornebise, Girolami & Kosmidis, 2012]



Reinterpretation and extensions

Reinterpretation of ABC output as joint simulation from

T(x, y10) = f(x|0)7y x (y]x)

where
Ty x(y[x) = Ke(y — x)



Reinterpretation and extensions

Reinterpretation of ABC output as joint simulation from

(%, y10) = f(x|0) 7y x(v[x)

where
Tyix (y[x) = Ke(y — x)

Reinterpretation of noisy ABC

if Y\y°bs ~ ﬁy\x(-\yd’s), then marginally

7 ~ Tyie(-|6°)

(© Explain for the consistency of Bayesian inference based on y and 7
[Lee, Andrieu & Doucet, 2012]



ABC for Markov chains

Rewriting the posterior as

7r((9)1_"7r(0]X1) H (0|xe—1, X¢)

where 7(0|x¢—1, x¢) o< f(x¢|x¢—1,0)m(0)



ABC for Markov chains

Rewriting the posterior as

7r((9)1_"7r(6?]X1) H (0|xe—1, X¢)

where 7(0|x¢—1, x¢) o< f(x¢|x¢—1,0)m(0)
e Allows for a stepwise ABC, replacing each m(0|x;—1,x:) by an
ABC approximation
e Similarity with F&P’s multiple sources of data (and also with

)
[White et al., 2010, 2012



Back to sufficiency

Difference between regular sufficiency, equivalent to

m(0ly) = m(fln(y))

for all 8's and all priors 7, and



Back to sufficiency
Difference between regular sufficiency, equivalent to
m(0ly) = m(0]n(y))

for all 8's and all priors 7, and
marginal sufficiency, stated as

m(p(0)ly) = m(1(0)In(y))

for all 's, the given prior 7 and a subvector p(6)
[Basu, 1977]



Back to sufficiency

Difference between regular sufficiency, equivalent to

m(0ly) = m(fln(y))

for all 8's and all priors 7, and
marginal sufficiency, stated as

m(p(0)ly) = m(1(0)In(y))

for all 's, the given prior 7 and a subvector p(6)

[Basu, 1977]
Relates to F & P’s main result, but could event be reduced to
conditional sufficiency

w(1(0)ly**®) = m(1(8)In(y*>))

(if feasible at all...)
[Dawson, 2012]



Predictive performances

Instead of posterior means, other aspects of posterior to explore.
E.g., look at minimising loss of information

| #(0.)108 p(é)p’(’))dedy JECOLE md%n(y)

for selection of summary statistics.
[Filippi, Barnes, & Stumpf, 2012]



Auxiliary variables

Auxiliary variable method avoids computations of untractable
constant in likelihood

f(y|0) = 30f(y]0)



Auxiliary variables

Auxiliary variable method avoids computations of untractable
constant in likelihood

f(y|0) = 30f(y]0)

Introduce pseudo-data z with artificial target g(z|6,y)
Generate 8 ~ K(0,60') and 2’ ~ f(z|¢')
Accept with probability

m(0")f (yl0")g(Z]6",y) K(0',0)f(z[0)

O (y0)e(ldy) Koo)'

[Mgller, Pettitt, Berthelsen, & Reeves, 2006]



Auxiliary variables

Auxiliary variable method avoids computations of untractable
constant in likelihood

f(y|0) = 30f(y|6)

Introduce pseudo-data z with artificial target g(z|6,y)
Generate 8 ~ K(0,60') and Z’ ~ f(z|¢')
Accept with probability

() (y19)e( 10, y) K(¥.0)/(2l9)

m(0)f(y|0)g(z]0,y) K(O, 6V)F( '10")
[Mgller, Pettitt, Berthelsen, & Reeves, 2006]




Auxiliary variables

Auxiliary variable method avoids computations of untractable
constant in likelihood

f(y|0) = 30f(y]0)

Introduce pseudo-data z with artificial target g(z|6,y)
Generate 8 ~ K(0,6') and 2’ ~ f(z|¢')

For Gibbs random fields, existence of a genuine sufficient statistic

n(y)-
[Mgller, Pettitt, Berthelsen, & Reeves, 2006]



Auxiliary variables and ABC

Special case of ABC when

* &(zl0,y) = Ke(n(z) —n(y))
o f(y|0")f(z|0)/f(y|0)f(Z'|6) replaced by one [or not?!]



Auxiliary variables and ABC

Special case of ABC when

> 8(zlf.y) = Ke(n(z) —n(y))

o f(y|0")f(z|0)/f(y|0)f(Z'|6) replaced by one [or not?!]
Consequences

e likelihood-free (ABC) versus constant-free (AVM)

e in ABC, K(-) should be allowed to depend on 0

e for Gibbs random fields, the auxiliary approach should be
prefered to ABC

[Mgller, 2012]



ABC and BIC

Idea of applying BIC during the
e Run regular ABC
e Select summary statistics during local regression

¢ Recycle the prior simulation sample (reference table) with
those summary statistics

e Rerun the corresponding local regression (low cost)
[Pudlo & Sedki, 2012]



ABC for model choice

@ ABC for model choice




Bayesian model choice

Several models My, M,, ... are considered simultaneously for a
dataset y and the model index M is part of the inference.

Use of a prior distribution. m(M = m), plus a prior distribution on
the parameter conditional on the value m of the model index,

7"'m(em)

Goal is to derive the posterior distribution of M, challenging
computational target when models are complex.



Generic ABC for model choice

Algorithm 4 Likelihood-free model choice sampler (ABC-MC)
fort=1to T do
repeat
Generate m from the prior 7(M = m)
Generate 6, from the prior 7,(60,)
Generate z from the model 7,(2|0,)
until p{n(z),n(y)} <e
Set m(Y) = m and 6V = 9,,
end for




ABC estimates

Posterior probability m(M = m|y) approximated by the frequency
of acceptances from model m

1 T
7D o=
t=1

Issues with implementation:
e should tolerances € be the same for all models?

e should summary statistics vary across models (incl. their
dimension)?

e should the distance measure p vary as well?



ABC estimates

Posterior probability m(M = m|y) approximated by the frequency
of acceptances from model m

1 T
7D o=

t=1

Extension to a weighted polychotomous logistic regression estimate
of m(M = mly), with non-parametric kernel weights
[Cornuet et al., DIYABC, 2009]



The Great ABC controversy

On-going controvery in phylogeographic genetics about the validity
of using ABC for testing

Against: Templeton, 2008,
2009, 2010a, 2010b, 2010c
argues that nested hypotheses
cannot have higher probabilities
than nesting hypotheses (!)

Ao Bocooo

Ignoring likelihood may

be dangerous to your
inference!

fodey com



The Great ABC controversy

On-going controvery in phylogeographic genetics about the validity

of using ABC for testing
Replies: Fagundes et al., 2008,

Against: Templeton, 2008, Beaumont et al., 2010, Berger et
2009, 2010a, 2010b, 2010c al., 2010, Csillery et al., 2010
argues that nested hypotheses point out that the criticisms are
cannot have higher probabilities addressed at

than nesting hypotheses (!) model-based inference and have

nothing to do with ABC...



Gibbs random fields

Gibbs distribution
Thervy = (y1,...,yn) is a Gibbs random field associated with
the graph & if

f(y) =—eXp{ ZV yC}7

ce®

where 3 is the normalising constant, % is the set of cliques of &
and V, is any function also called potential

U(y) = > ccer Ve(Ye) is the energy function




Gibbs random fields

Gibbs distribution

Thervy = (y1,...,yn) is a Gibbs random field associated with
the graph & if

f(y) =—eXp{ ZV yC}7

ce®

where 3 is the normalising constant, % is the set of cliques of &
and V, is any function also called potential
U(y) = > ccer Ve(Ye) is the energy function

(© 3 is usually unavailable in closed form



Potts model

Potts model
Vc(y) is of the form

Ve(y) =6S(y) =0 Z Oy=y;

I~i

where /~i denotes a neighbourhood structure




Potts model

Potts model
Vc(y) is of the form

Ve(y) = 0S(y) =0 dy—y,

I~i

where /~i denotes a neighbourhood structure

In most realistic settings, summation

Zg = Z exp{07S(x)}

XEX

involves too many terms to be manageable and numerical

approximations cannot always be trusted
[Cucala, Marin, CPR & Titterington, 2009]



Bayesian Model Choice

Comparing a model with potential Sy taking values in R versus a
model with potential S; taking values in RP! can be done through
the Bayes factor corresponding to the priors mg and 71 on each
parameter space

[ ew{6750(x)}/ Zg, gmo(d6o)

B o /my (X) = [ exp{6]51(x)}/ Zg, m1(d61)




Bayesian Model Choice

Comparing a model with potential Sy taking values in R versus a
model with potential S; taking values in RP! can be done through
the Bayes factor corresponding to the priors mg and 71 on each
parameter space

_ J exp{8g So(x)}/ Zg, om0(d60)
Jexp{6151(x)}/Zg, ;m1(d61)

%mo/ml (X)

Use of Jeffreys' scale to select most appropriate model



Neighbourhood relations

Choice to be made between M neighbourhood relations
it (0<m<M-1)

with

Sm(x) = Z ]I{x,-:x,-/}

driven by the posterior probabilities of the models.



Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution 7(M = m) and

m(OIM = m) = 7p(0m)



Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution 7(M = m) and
T(O|M = m) = 7m(0m)

Computational target:

P(M = m|x) x / £ (X[8rm ) o (Br) i (M = )

m



Sufficient statistics

By definition, if S(x) sufficient statistic for the joint parameters
(M7 907 cee 79/\/]71)1

P(M = m|x) = P(M = m|5(x)) .



Sufficient statistics

By definition, if S(x) sufficient statistic for the joint parameters
(M7 907 cee 79/\/]71)1

P(M = m|x) = P(M = m|5(x)) .

For each model m, own sufficient statistic S,(-) and
S() = (So(*),---,Sm_1(+)) also sufficient.



Sufficient statistics in Gibbs random fields

For Gibbs random fields,

XM =m o~ fn(X0m) = Fn(XIS(X))fA(S(x)[0m)
_ L

where

n(S(x)) = #{x € & : 5(%) = S(x)}

© S(x) is therefore also sufficient for the joint parameters
[Specific to Gibbs random fields!]



ABC model choice Algorithm

ABC-MC
e Generate m* from the prior (M = m).
o Generate 07 . from the prior 7pm=(+).
o Generate x* from the model fi,« (|67 ).
o Compute the distance p(S(x°), S(x*)).
Accept (0%, m*) if p(S(x°), S(x*)) < .

m*»

Note When € = 0 the algorithm is exact



ABC approximation to the Bayes factor

Frequency ratio:

~

_ _ PM=mo®)  w(M = my)
BF o/ (x°) = B(M = my|x0) " (M = mo)
ﬁ{m’-* = mo} « W(M = ml)

jj{mi*zml} W(M:mO)’




ABC approximation to the Bayes factor

Frequency ratio:
i _ 0 _
BF () = ot = mob) M=)
P(M = m|x0)  7(M = mp)

tH{m™* = mo} " (M= m)
g{m™* =m} = m(M=mo)’

replaced with

_ oy _ L+ H{m™ =mo} ~w(M=m)
BFmo/ml(x ) = 14+ 4{m™* = m} X (M = my)

to avoid indeterminacy (also Bayes estimate).



Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f(x/do) = exp (90 Zﬂ{xi_1}> {1+ exp(00)) "

i=1
Versus
1 ‘ .
fl(x’el) = 5 exp (61 22 H{X,-:X,-_l}> /{1 + exp(el)} ! )

with priors 6y ~ U(—5,5) and 6, ~ U(0,6) (inspired by “phase
transition” boundaries).



Toy example (2)

10

B

(left) Comparison of the true BF o /m, (x°) with é?—'mo/ml (x%) (in
logs) over 2,000 simulations and 4.10° proposals from the prior.
(right) Same when using tolerance € corresponding to the 1%
quantile on the distances.



Back to sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability.’

[Scott Sisson, Jan. 31, 2011, X.'Og]



Back to sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability.’

[Scott Sisson, Jan. 31, 2011, X.'Og]
If m1(x) sufficient statistic for model m = 1 and parameter #; and

12(x) sufficient statistic for model m = 2 and parameter 6,
(m1.(x), m2(x)) is not always sufficient for (m, 0,)



Back to sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability.’

[Scott Sisson, Jan. 31, 2011, X.'Og]

If m1(x) sufficient statistic for model m = 1 and parameter #; and
12(x) sufficient statistic for model m = 2 and parameter 6,
(m1.(x), m2(x)) is not always sufficient for (m, 0,)

© Potential loss of information at the testing level



Limiting behaviour of By (T — o0)

ABC approximation

.
e I Dpgnat) my)d <e

§1\2(Y) = =7
>t Ime=2 Ly (zt) n(y)y<e

I

where the (mt, z')'s are simulated from the (joint) prior



Limiting behaviour of By (T — o0)

ABC approximation

.

Zt:l Ime=1 Hp{n(zf)m(y)}ﬁe
T

> t=1 =2 Lpgnat) niy)y <e

Bra(y) =

I

where the (mt, z')'s are simulated from the (joint) prior
As T go to infinity, limit

J Lofn@)ny)y<em1(01)f1(2]61) dzd6y
S Totn@)n(y)r<em2(02)12(2]62) dz d6>
f]Ip{n,n(y)}ﬁeﬂl(el)fln(nwl) dndé,
fﬂp{n,n(y)}§e772(02) fy(n|62) dnd6y’

Bir(y) =

where £,'(n|61) and £,'(n|@2) distributions of 7(z)



Limiting behaviour of By, (¢ — 0)

When € goes to zero,

_ [ m(81)(n(y)|61) d6:
[ m2(02)1(1(y)|62) dO °

Bl (y)



Limiting behaviour of By, (¢ — 0)

When € goes to zero,

_ [ m(81)(n(y)|61) d6:
[ m2(02)1(1(y)|62) dO °

sz(Y)

(© Bayes factor based on the sole observation of 7(y)



Limiting behaviour of By, (under sufficiency)

If n(y) sufficient statistic for both models,

fi(y|0i) = gi(y)f"(n(y)|0))
Thus
by - Ja@a "(n(ynel)del
2y = f@ (02)22(y) 5 (n(y)|62) d6>
~aly) S m(o f"(n<y)|01>d91 _al) g )
y) [m2(02) 8 (1(y)[02) 0>  gry) 12V

[Didelot, Everitt, Johansen & Lawson, 2011]



Limiting behaviour of By, (under sufficiency)

If n(y) sufficient statistic for both models,

fi(y|6:) = gi(y)f"(n(y)|6;)
Thus

01)do;

Jo, m(01)g1(¥)f (n(y)|
6,)d6,

) (1)[01)
Brly) = f@2 7(02)&2(y) B (n(y)[62)
y) [ m1(01)f"(n(y)|01)d6: _ g1(y) B (y)
y) [72(02)5(n(y)[02)d02 ~ galy) 2"

[Didelot, Everitt, Johansen & Lawson, 2011]

(© No discrepancy only when cross-model sufficiency



Poisson /geometric example

Sample
X = (X1,...,Xn)

from either a Poisson P(\) or from a geometric G(p) Then

S= Zy/' = n(x)

sufficient statistic for either model but not simultaneously

Discrepancy ratio

g1(x) _ S!H*S/Hiy,-!
w0 10




Poisson /geometric discrepancy

Range of Bia(x) versus Bj,(x) Bi2(x): The values produced have
nothing in common.

o

10 15 20 25 30 35 4160 -100  -50 0



Formal recovery

Creating an encompassing exponential family
F(x[01, 02, a1, 2) oc exp{O] m1(x) + 6] mi(x) + art1(x) + azt2(x)}

leads to a sufficient statistic (71(x), 72(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]



Formal recovery

Creating an encompassing exponential family
f(x|01,02, a1, a2) oc exp{0] n1(x) + 01 n1(x) + axti(x) + azta(x)}

leads to a sufficient statistic (n1(x), 72(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

In the Poisson/geometric case, if [[; x;! is added to S, no
discrepancy



Formal recovery

Creating an encompassing exponential family
F(x[01, 02, a1, 2) oc exp{0] m1(x) + 0] m(x) + art1(x) + azt2(x)}

leads to a sufficient statistic (n1(x), 72(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

Only applies in genuine sufficiency settings...

© Inability to evaluate loss brought by summary statistics



Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, X.'Og]



Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, X.'Og]

In the Poisson/geometric case, if E[y;] = 6y > 0,

. n o (00 + 1)2 _90
Jim Blly) = 05 e



MA(q) divergence

Evolution [against €] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when € equal to
10,1, .1,.01% quantiles on insufficient autocovariance distances. Sample

of 50 points from a MA(2) with 1 = 0.6, 6, = 0.2. True Bayes factor
equal to 17.71.



MA(q) divergence

LA

Evolution [against €] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when € equal to

10,1, .1,.01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(1) model with #; = 0.6. True Bayes factor By,
equal to .004.



Further comments

‘There should be the possibility that for the same model,
but different (non-minimal) [summary] statistics (so
different n's: m1 and nj) the ratio of evidences may no
longer be equal to one.’

[Michael Stumpf, Jan. 28, 2011, 'Og]

Using different summary statistics [on different models] may
indicate the loss of information brought by each set but agreement
does not lead to trustworthy approximations.



A stylised problem

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic T(y)
consistent?



A stylised problem

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic T(y)
consistent?

Note/warnin: (© drawn on T(y) through Bl (y) necessarily differs

from (© drawn on y through Bia(y)
[Marin, Pillai, X, & Rousseau, JRSS B, 2013]



A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:

[X, Cornuet, Marin, & Pillai, Aug. 2011]
Model 9;: y ~ N (61,1) opposed
to model My: y ~ L(62,1/+/2), Laplace distribution with mean 6,
and scale parameter 1//2 (variance one).
Four possible statistics

@ sample mean y (sufficient for My if not My);
® sample median med(y) (insufficient);
©® sample variance var(y) (ancillary);

@ median absolute deviation mad(y) = med(|]y — med(y)|);



A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:

[X, Cornuet, Marin, & Pillai, Aug. 2011]
Model 9;: y ~ N (61,1) opposed
to model My: y ~ L(#2,1/+/2), Laplace distribution with mean 65
and scale parameter 1/+/2 (variance one).

n=100 n=100

o

— | [

06

00 01 02 03 04 05 06 07
L L L L L L L L




Framework

Starting from sample
y =1 ¥n)
the observed sample, not necessarily iid with true distribution
y ~P"
Summary statistics
T(y) = T" = (Tu(y), To(y), - , Ta(y)) € R

with true distribution T" ~ G,,.



Framework

(© Comparison of
— under My, y ~ F1 n(+|01) where 6; € ©; C RP
— under My, y ~ F2 n(+|02) where 6, € ©, C RP?
turned into
— under My, T(y) ~ Gi,n(:|01), and 61| T (y) ~ m1(-[T")
— under My, T(y) ~ Gz,n(:|02), and 02| T (y) ~ m2(-[T")



Assumptions

A collection of asymptotic “standard” assumptions:

[A1] is a standard central limit theorem under the true model with
asymptotic mean pg
[A2] controls the large deviations of the estimator T" from the
model mean 1(0)
[A3] is the standard prior mass condition found in Bayesian
asymptotics (d; effective dimension of the parameter)
[A4] restricts the behaviour of the model density against the true
density

[Think CLT!]



Asymptotic marginals

Asymptotically, under [A1]-[A4]

m(t) :/‘gi(twi)ﬂi(ei)dei

i

is such that
(i) if inf{|u,~(9,~) — /1,0‘; 9,’ € @,} =0,

C/v,‘j_d" <mi(T") < Cuvg_d"
and
(ii) if inf{\u;(@;) — /Lo‘; 9,’ S @,} >0

d

mi(T") = opn[vI ™7 4+ vI=1].



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value p(6) of T" under
both models. And only by this mean value!



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value p(6) of T" under
both models. And only by this mean value!

Indeed, if
inf{|p0 — p2(62)|; 02 € ©2} = inf{|po — p1(61)[;: 61 € ©1} =0
then
v %) < my(T")/mo(T") < Cuvp B,

where C;, C, = Opn(1), irrespective of the true model.
© Only depends on the difference di — db: no consistency



Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value p(0) of T" under
both models. And only by this mean value!

Else, if

inf{|po — pa(02)|; 02 € @2} > inf{|uo — p1(01)};61 € ©1} =0

then

> Cymin (v,T( 1-oz) V;(dlsz))



Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of T"
null hypothesis that both models are compatible with the statistic
T"

Ho : inf{‘,u,g(eg) — /Jo‘; 92 S @2} =0
against

Hy - inf{\,ug(ﬁz) — /1,0‘;92 S @2} >0

testing procedure provides estimates of mean of T" under each
model and checks for equality



Checking in practice

Under each model 91;, generate ABC sample ¢; ;,/ =1,---,L

For each 0;/, generate y; ; ~ Fj ,(-|¢; ), derive T"(y; ) and
compute

fii = %Z T'(yin), i=12.
Conditionally on T"(y),
VL —E7 [1i(6:)| T" ()]} ~ N(0, V7).
Test for a common mean
Ho @ i1 ~ N (o, V1), i ~ N (o, V2)
against the alternative of different means

Hy : i ~ N(pi, Vi), with g # po.



Toy example: Laplace versus Gauss

j —
o | |
g ===
o
™
o
S
o
=
o i P —————
T T T T
Gauss Laplace Gauss Laplace

Normalised x> without and with mad



ABC model choice via random forests

©® ABC model choice via random forests
Random forests
ABC with random forests
Illustrations




Leaning towards machine learning

e ABC-MC seen as learning about which model is most
appropriate from a huge (reference) table

e exploiting a large number of summary statistics not an issue
for machine learning methods intended to estimate efficient
combinations

e abandoning (temporarily?) the idea of estimating posterior
probabilities of the models, poorly approximated by machine
learning methods, and replacing those by posterior predictive
expected loss

[Cornuet et al., 2014, in progress]



Random forests

Technique that stemmed from Leo Breiman's bagging (or
bootstrap aggregating) machine learning algorithm for both
classification and regression

[Breiman, 1996]

Improved classification performances by averaging over
classification schemes of randomly generated training sets, creating
a “forest” of (CART) decision trees, inspired by Amit and Geman
(1997) ensemble learning

[Breiman, 2001]



Growing the forest

Breiman's solution for inducing random features in the trees of the
forest:

e boostrap resampling of the dataset and

e random subset-ing [of size \/t] of the covariates driving the
classification at every node of each tree

Covariate x, that drives the node separation
Xr Z Cr

and the separation bound c¢; chosen by minimising entropy or Gini
index



Breiman and Cutler’s algorithm

Algorithm 5 Random forests
fort=1to T do
//*T is the number of trees*//
Draw a bootstrap sample of size npgot
Grow an unpruned decision tree
for b=1to B do
//*B is the number of nodes*//
Select ngry of the predictors at random
Determine the best split from among those predictors
end for
end for
Predict new data by aggregating the predictions of the T trees




Subsampling

Due to both large datasets [practical] and theoretical
recommendation from Gérard Biau [private communication], from
independence between trees to convergence issues, boostrap
sample of much smaller size than original data size

N = o(n)



Subsampling

Due to both large datasets [practical] and theoretical
recommendation from Gérard Biau [private communication], from
independence between trees to convergence issues, boostrap
sample of much smaller size than original data size

N = o(n)

Each CART tree stops when number of observations per node is 1:



ABC with random forests

Starting with

e possibly large collection of summary statistics (sij,. .., Sp;)
(from scientific theory input to available statistical softwares,

to machine-learning alternatives)

e ABC reference table involving model index, parameter values
and summary statistics for the associated simulated

pseudo-data

run R randomforest to infer Mt from (sy;,. .., spi)



ABC with random forests

Starting with

e possibly large collection of summary statistics (sij,. .., Sp;)
(from scientific theory input to available statistical softwares,

to machine-learning alternatives)

o ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (si;,. .., Spi)

at each step O(,/p) indices sampled at random and most
discriminating statistic selected, by minimising entrepy Gini loss




ABC with random forests

Starting with

e possibly large collection of summary statistics (s, . .., Sp;)
(from scientific theory input to available statistical softwares,

to machine-learning alternatives)

e ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (si;,. .., Spi)
Average of the trees is resulting summary statistics, highly
non-linear predictor of the model index




Outcome of ABC-RF

Random forest predicts a (MAP) model index, from the observed
dataset: The predictor provided by the forest is “sufficient” to
select the most likely model but not to derive associated posterior

probability



Outcome of ABC-RF

Random forest predicts a (MAP) model index, from the observed
dataset: The predictor provided by the forest is “sufficient” to
select the most likely model but not to derive associated posterior
probability

e exploit entire forest by computing how many trees lead to
picking each of the models under comparison but variability
too high to be trusted

e frequency of trees associated with majority model is no proper
substitute to the true posterior probability

e And usual ABC-MC approximation equally highly variable and
hard to assess



Posterior predictive expected losses

We suggest replacing unstable approximation of
PO = m|x,)

with x, observed sample and m model index, by average of the
selection errors across all models given the data x,

P(M(X) # Mxo)
where pair (91, X) generated from the predictive

/ F(x10)(0, M|xo)d0

and M(x) denotes the random forest model (MAP) predictor



Posterior predictive expected losses

Bayesian estimate of the posterior error
integrates error over most likely part of the parameter space

gives an averaged error rather than the posterior probability of
the null hypothesis

easily computed: Given ABC subsample of parameters from
reference table, simulate pseudo-samples associated with
those and derive error frequency



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:
Xt = €t — 191€t—1[—192€t—2]

Earlier illustration using first two autocorrelations as S(x)

[Marin et al., Stat. & Comp., 2011]
Result #1: values of p(m|x) [obtained by numerical integration]
and p(m|S(x)) [obtained by mixing ABC outcome and density
estimation| highly differ!
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Difference between the posterior probability of MA(2) given either
x or S(x). Blue stands for data from MA(1), orange for data from

MA(2)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:
xt = €r — V1€r-1[—V2€r2)]

Earlier illustration using two autocorrelations as S(x)

[Marin et al., Stat. & Comp., 2011]
Result #2: Embedded models, with simulations from MA(1)
within those from MA(2), hence linear classification poor



toy: MA(1) vs. MA(2)

lag=2 autocovariance

lag-1 autocovanance

Simulations of S(x) under MA(1) (blue) and MA(2) (orange)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:
xt = €r — V1€r-1[—V2€r2]

Earlier illustration using two autocorrelations as S(x)

[Marin et al., Stat. & Comp., 2011]
Result #3: On such a small dimension problem, random forests
should come second to k-nn ou kernel discriminant analyses



toy: MA(1) vs. MA(2)

classification prior
method error rate (in %)
LDA 27.43
Logist. reg. 28.34
SVM (library e1071) 17.17
“naive” Bayes (with G marg.) 19.52
“naive” Bayes (with NP marg.) 18.25
ABC k-nn (k = 100) 17.23
ABC k-nn (k = 50) 16.97
Local log. reg. (k = 1000) 16.82
Random Forest 17.04
Kernel disc. ana. (KDA) 16.95

True MAP 12.36




Evolution scenarios based on SNPs

g

e

Three scenarios for the evolution of three populations from their
most common ancestor



DIYBAC header (!)

7 parameters and 48 summary statistics

3 scenarios: 7 7 7
scenario 1 [0.33333] (6)
N1 N2 N3
0 sample
0 sample
0 sample
ta merge
ts merge
ts varne
scenario
N1 N2 N3
ts varne 1 N4

scenario 3 [0.33333] (7)

N1 N2 N3

historical parameters priors (7,1)
N1 N UN[100.0,30000.0,0.0,0.0]

N2 N UN[100.0,30000.0,0.0,0.0]

N3 N UN[100.0,30000.0,0.0,0.0]

ta T UN[10.0,30000.0,0.0,0.0]

ts T UN[10.0,30000.0,0.0,0.0]
N4 N UN[100.0,30000.0,0.0,0.0]
r A UN[0.05,0.95,0.0,0.0]
ts>ta

DRAW UNTIL

3
2
N4
[0.33333] (6)

N R R W e

Evolution scenarios based on SNPs



Evolution scenarios based on SNPs

Model 1 with 6 parameters:

o four effective sample sizes: N for population 1, N, for
population 2, N3 for population 3 and, finally, N4 for the
native population;

e the time of divergence t, between populations 1 and 3;
e the time of divergence ts between populations 1 and 2.

o effective sample sizes with independent uniform priors on
[100, 30000]

e vector of divergence times (t,, ts) with uniform prior on
{(a,s) € [10,30000] ® [10,30000]|a < s}



Evolution scenarios based on SNPs

Model 2 with same parameters as model 1 but the divergence time
t, corresponds to a divergence between populations 2 and 3; prior
distributions identical to those of model 1

Model 3 with extra seventh parameter, admixture rate r. For that
scenario, at time t, admixture between populations 1 and 2 from
which population 3 emerges. Prior distribution on r uniform on
[0.05,0.95]. In that case models 1 and 2 are not embeddeded in
model 3. Prior distributions for other parameters the same as in
model 1



Evolution scenarios based on SNPs

Set of 48 summary statistics:

e proportion of loci with null gene diversity (= proportion of monomorphic
loci)

® mean gene diversity across polymorphic loci
[Nei, 1987

® variance of gene diversity across polymorphic loci

® mean gene diversity across all loci



Evolution scenarios based on SNPs

Set of 48 summary statistics:

® proportion of loci with null FST distance between both samples
[Weir and Cockerham, 1984]

® mean across loci of non null FST distances between both samples
® variance across loci of non null FST distances between both samples
® mean across loci of FST distances between both samples

® proportion of 1 loci with null Nei's distance between both samples
[Nei, 1972]

® mean across loci of non null Nei's distances between both samples
® variance across loci of non null Nei's distances between both samples

® mean across loci of Nei's distances between the two samples



Evolution scenarios based on SNPs

Set of 48 summary statistics:

® proportion of loci with null admixture estimate
® mean across loci of non null admixture estimate
® variance across loci of non null admixture estimated

® mean across all locus admixture estimates



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20,000
simulations, prior predictive error rates:

e “naive Bayes’ classifier 33.3%
raw LDA classifier 23.27%
ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%
ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%
local logistic classifier based on LDA components with

e k =500 neighbours 22.61%

e random forest on summaries 21.03%

(Error rates computed on a prior sample of size 10%)



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20,000
simulations, prior predictive error rates:

e “naive Bayes’ classifier 33.3%
raw LDA classifier 23.27%
ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%
ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%
local logistic classifier based on LDA components with

e k = 1000 neighbours  22.46%

e random forest on summaries 21.03%

(Error rates computed on a prior sample of size 10%)



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20,000
simulations, prior predictive error rates:

e “naive Bayes’ classifier 33.3%
raw LDA classifier 23.27%
ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%
ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%
local logistic classifier based on LDA components with

e k = 5000 neighbours  22.43%

e random forest on summaries 21.03%

(Error rates computed on a prior sample of size 10%)



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20,000
simulations, prior predictive error rates:

e “naive Bayes’ classifier 33.3%
raw LDA classifier 23.27%
ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%
ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%
local logistic classifier based on LDA components with

e k = 5000 neighbours  22.43%

e random forest on LDA components only  23.1%

(Error rates computed on a prior sample of size 10%)



Evolution scenarios based on SNPs

For a sample of 1000 SNIPs measured on 25 biallelic individuals
per population, learning ABC reference table with 20,000
simulations, prior predictive error rates:

e “naive Bayes’ classifier 33.3%
raw LDA classifier 23.27%
ABC k-nn [Euclidean dist. on summaries normalised by MAD]
25.93%
ABC k-nn [unnormalised Euclidean dist. on LDA components]
22.12%
local logistic classifier based on LDA components with

e k = 5000 neighbours  22.43%

(Error rates computed on a prior sample of size 10%)



Evolution scenarios based on SNPs

Posterior predictive error rates

LD2

-5




Evolution scenarios based on SNPs

Posterior predictive error rates

LD2

favourable: 0.010 error — unfavourable: 0.104 error



Evolution scenarios based on microsatellites

Same setting as previously

nnnnn

ario 2

g

For2 Ford

Sample of 25 diploid individuals per population, on 20 locus
(roughly corresponds to 1/5th of previous information)



Evolution scenarios based on microsatellites

mean number of alleles across loci
mean gene diversity across loci (Nei, 1987)
mean allele size variance across loci

mean M index across loci (Garza and Williamson, 2001,
Excoffier et al., 2005)



Evolution scenarios based on microsatellites

mean number of alleles across loci (two samples)

mean gene diversity across loci (two samples)

mean allele size variance across loci (two samples)

FST between two samples (Weir and Cockerham, 1984)

mean index of classification (two samples) (Rannala and
Moutain, 1997; Pascual et al., 2007)

shared allele distance between two samples (Chakraborty and
Jin, 1993)
(614)? distance between two samples (Golstein et al., 1995)

Maximum likelihood coefficient of admixture (Choisy et al.,
2004)



Evolution scenarios based on microsatellites

classification prior error*
method rate (in %)
raw LDA 35.64
“naive” Bayes (with G marginals) 40.02
k-nn (MAD normalised sum stat) 37.47
k-nn (unormalised LDA) 35.14
RF without LDA components 35.14
RF with LDA components 33.62
RF with only LDA components 37.25

*estimated on pseudo-samples of 10* items drawn from the prior



Evolution scenarios based on microsatellites

Posterior predictive error rates

LD2

LD1



Evolution scenarios based on microsatellites

Posterior predictive error rates

LD2

LD1

favourable: 0.183 error — unfavourable: 0.435 error



Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion




Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion

classification prior error’

method rate (in %)

raw LDA 38.94

“naive” Bayes (with G margins) 54.02
k-nn (MAD normalised sum stat) 58.47
RF without LDA components 38.84
RF with LDA components 35.32

festimated on pseudo-samples of 10* items drawn from the prior



Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion

Random forest allocation frequencies
1 2 3 4 5 6 7 8 9 10
0.168 0.1 0.008 0.066 0.296 0.016 0.092 0.04 0.014 0.2

Posterior predictive error based on 20,000 prior simulations and
keeping 500 neighbours (or 100 neighbours and 10 pseudo-datasets
per parameter)

0.3682



Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion




Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion

with LDA variables.
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Back to Asian Ladybirds

Comparing 10 scenarios of Asian beetle invasion

w0
8
S
°
3
o
I \ =TT
[ N NPt g
2 -
5 ‘\
o
°
| SO
2 IR
w0
Q]
o
°
g
o
T T T T T
0 500 1000 1500 2000

k

posterior predictive error 0.368



conclusion on random forests

unlimited aggregation of arbitrary summary statistics
recovery of discriminant statistics when available
automated implementation with reduced calibration
self-evaluation by posterior predictive error

soon to appear in DIYABC



ABC estimation via random forests

@ ABC estimation via random forests



Two basic issues with ABC

ABC compares numerous simulated dataset to the observed one
Two major difficulties:

e to decrease approximation error (or tolerance €) and hence
ensure reliability of ABC, total number of simulations very
large;

e calibration of ABC (tolerance, distance, summary statistics,
post-processing, &tc) critical and hard to automatise



classification of summaries by random forests

Given a large collection of summary statistics, rather than selecting
a subset and excluding the others, estimate each parameter of
interest by a machine learning tool like random forests

RF can handle thousands of predictors

ignore useless components

fast estimation method with good local properties
automatised method with few calibration steps

substitute to Fearnhead and Prangle (2012) preliminary
estimation of A(y°)

includes a natural (classification) distance measure that avoids
choice of both distance and tolerance

[Marin et al., 2016]



random forests as non-parametric regression

CART means

For regression purposes, i.e., to predict y as f(x), similar binary
trees in random forests
@ at each tree node, split data into two daughter nodes

@ split variable and bound chosen to minimise heterogeneity
criterion

© stop splitting when enough homogeneity in current branch

O predicted values at terminal nodes (or leaves) are average
response variable y for all observations in final leaf



[[lustration

00
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conditional expectation f(x) and well-specified dataset
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single regression tree

[[lustration



[[lustration
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ten regression trees obtained by bagging (Bootstrap AGGregatING)
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average of 100 regression trees



bagging reduces learning variance

When growing forest with many trees,
e grow each tree on an independent bootstrap sample

e at each node, select m variables at random out of all M
possible variables

Find the best dichotomous split on the selected m variables

predictor function estimated by averaging trees



bagging reduces learning variance

When growing forest with many trees,
e grow each tree on an independent bootstrap sample

e at each node, select m variables at random out of all M
possible variables

Find the best dichotomous split on the selected m variables

predictor function estimated by averaging trees

Improve on CART with respect to accuracy and stability



prediction error

A given simulation (y*™, x¥™) in the training table is not used in
about 1/3 of the trees ( “out-of-bag” case)

Average predictions I3°°b(x5im) of these trees to give out-of-bag
predictor of y'™



Related methods

adjusted local linear: Beaumont et al. (2002) Approximate Bayesian

computation in population genetics, Genetics

ridge regression: Blum et al. (2013) A Comparative Review of
Dimension Reduction Methods in Approximate Bayesian Computation,

Statistical Science

linear discriminant analysis: Estoup et al. (2012) Estimation of
demo-genetic model probabilities with Approximate Bayesian
Computation using linear discriminant analysis on summary statistics,

Molecular Ecology Resources

adjusted neural networks: Blum and Francois (2010) Non-linear
regression models for Approximate Bayesian Computation, Statistics and

Computing



ABC parameter estimation (ODOF)

One dimension = one forest (ODOF) methodology



ABC parameter estimation (ODOF)

One dimension = one forest (ODOF) methodology

parametric statistical model:
{f(y;0):ye,0 0O}, YCR", OCRP

with intractable density 7(-; 6)
plus prior distribution 7(6)

Inference on quantity of interest
P(f) e R

(posterior means, variances, quantiles or covariances)



common reference table

Given 17: Y — Rk a collection of summary statistics
e produce reference table (RT) used as learning dataset for
multiple random forests
e meaning, for 1 <t <N
® simulate () ~ 7(6)
@ simulate §: = (J1.6,- -+, Jnt) ~ F(y;00))
© compute 1n(e) = {m (%), -, m(Fe)}



ABC posterior expectations

Recall that @ = (61, ...,04) € RY



ABC posterior expectations

For each 6}, construct a separate RF regression with predictors
variables equal to summary statistics n(y) = {n1(y),...,(y)}

If Lp(n(y*)) denotes leaf index of b-th tree associated with n(y*)
— — . with |Lp|
response variables

— 1

E(0; | n(y*)) =

ov]

B
1 (1)
2 Lo 2 O

tn(ye)ELp(n(y*))

is our ABC estimate



ABC posterior quantile estimate

Random forests also available for quantile regression
[Meinshausen, 2006, JMLR]

Since

N

9 | n(y ZWt n(y™)) 9(t

t=1

with
HLb(n 77(Yt))
natural estimate of the cdf of Gj is
U | 77()’ Z {gjf)gu}'

t=1



ABC posterior quantile estimate

Since
N

B | n) = we(n(y*))os"

t=1

with

Ty (n(y*)) n(yr))
welnly”)) BZ Lo(n(y))

natural estimate of the cdf of 0 is
N
Flul () = S wilnly Do,y
t=1

ABC posterior quantiles + credible intervals given by F-1



ABC variances

Even though approximation of Var(6; | n(y*)) available based on
F, choice of alternative and slightly more involved version

In a given tree b in a random forest, existence of out-of-baf entries,
i.e., not sampled in associated bootstrap subsample

Use of out-of-bag simulations to produce estimate of E{6; | n(y:)},
5. (1)
0,



ABC variances

Even though approximation of Var(6; | n(y*)) available based on
F, choice of alternative and slightly more involved version

In a given tree b in a random forest, existence of out-of-baf entries,
i.e., not sampled in associated bootstrap subsample

Use of out-of-bag simulations to produce estimate of E{6; | n(y:)},
5. (1)
0,

Apply weights w¢(n(y*)) to out-of-bag residuals:

\Er(ﬂj In(y*)) = Zwt { H(t) éj(t)}z



ABC covariances

For estimating Cov(6;, 6, | n(y*)), construction of a specific
random forest

product of out-of-bag errors for 6; and 0,

{e}r) B éj(t)} {eét) _ é’ét)}

with again predictors variables the summary statistics
n(y) ={m),- - my)}



Gaussian toy example

Take

(Y1,---,¥n) | 01,02 ~jig N(61,62), n=10
01| 02 ~ N(0,02)
0, ~ 1G(4,3)
01|y ~T(n+8,(ny)/(n+1),(s° +6)/((n+1)(n+8)))
02|y ~1G{n/2+4,s/2+3}

Closed-form theoretical values like

P1(y) = E(01 | y), ¢a(y) = E(02 | y), ¥3(y) = Var(61 | y) and
Ya(y) = Var(62 | y)



Gaussian toy example

Reference table of N = 10,000 Gaussian replicates
Independent Gaussian test set of size Nyeq = 100

k = 53 summary statistics: the sample mean, the sample
variance and the sample median absolute deviation, and 50
independent pure-noise variables (uniform [0,1])



Gaussian toy example
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Scatterplot of the theoretical values with their corresponding

estimates



Gaussian

toy example
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Gaussian toy example

ODOF | adj local linear | adj ridge | adj neural net
Pi(y) =E(61 | y) 0.21 0.42 0.38 0.42
wa(y) =E(62|y) | 0.11 0.20 0.26 0.22
Y3(y) = Var(61 | y) 0.47 0.66 0.75 0.48
va(y) = Var(62 | y) | 0.46 0.85 0.73 0.98
Qo.025(01]y) 0.69 0.55 0.78 0.53
Qo.025(02]y) 0.06 0.45 0.68 1.02
Qo.o75(61y) 0.48 0.55 0.79 0.50
Qo.o75(62y) 0.18 0.23 0.23 0.38

Comparison of normalized mean absolute errors



Gaussian toy example
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Comments

ABC RF methods mostly insensitive both to strong correlations
between the summary statistics and to the presence of noisy
variables.

implies less number of simulations and no calibration

Next steps: adaptive schemes, deep learning, inclusion in DIYABC



[some] asymptotics of ABC

@ [some] asymptotics of ABC



consistency of ABC posteriors

Asymptotic study of the ABC-posterior z = z("

e ABC posterior consistency and convergence rate (in n)
o Asymptotic shape of m(-|y(")
e Asymptotic behaviour of §, = EABC[g]y("]

[Frazier et al., 2016]



consistency of ABC posteriors

e Concentration around true value and Bayesian consistency less
stringent conditions on the convergence speed of tolerance ¢,
to zero, when compared with asymptotic normality of ABC
posterior

e asymptotic normality of ABC posterior mean does not require
asymptotic normality of ABC posterior



ABC posterior consistency

For a sample y = y(" and a tolerance € = ¢,, when n — 400,
assuming a parametric model 8 € RX, k fixed

e Concentration of summary 7)(z): there exists b(0) such that
n(z) — b(6) = o, (1)
e Consistency:

Me, (10 — 8ol < dly) =1+ 0p(1)

e Convergence rate: there exists 6, = o(1) such that

Ne, ([0 — B0 < dnly) =1+ Op(l)



Related results

existing studies on the large sample properties of ABC, in which
the asymptotic properties of point estimators derived from ABC
have been the primary focus

[Creel et al., 2015; Jasra, 2015; Li & Fearnhead, 2015]



Convergence when ¢, = o,

Y

Under assumptions
(A1) Jo, — +o0
—1 . o
Py (7, 11(z) — b(O)] > u) < c(O)h(u), lim h(u) =0
(A2)
N(||b(8) — b(Bo)|| < u) < uP, u=0

posterior consistency and posterior concentration rate A7 that
depends on the deviation control of dx{n(z), b(#)}
posterior concentration rate for b(#) bounded from below by O(eT)



> o,

Y

Convergence when ¢,

Under assumptions
(A1) Jo, = +o0

Pg (0, In(z) — ()| > u) < c(O)h(u).  lim h(u) =0

u—-+00

(A2)
N(||b(8) — b(Bo)|| < u) < uP, u=0

then
e, (115(6) = b(B0) | S en + aah ™ (eD)ly) =1+ 0p(1)
If also ||@ — || < L||b(8) — c(6o)]|*, locally and 8 — b(6) 1-1

M, (10— 8oll < € + 07 (h™H(e:))” ly) = 1+ 0p(1)

dn




Comments

o if Pg (0, n(z) — b(8)|| > u) < c(B)h(u), two cases

(1) h(u) S u™", then 6, = ¢, + o€ 0"
(2] h(u) < e <, then 0, = ¢, + o, log(1/e,)



Comments

o if Pg (0, n(z) — b(8)|| > u) < c(B)h(u), two cases
(1) h(u) S u™", then 6, = ¢, + o€ 0"
(2] h(u) < e <, then 0, = ¢, + o, log(1/e,)
e Eg., n(y) =n"1>; g(yi) with moments on g (case 1) or
Laplace transform (case 2)



Comments

o M(||b(8) — b(Bg)|| < u) =< uP : If M regular enough then
D = dim(6)

e Same results holds when €, = o(c,) if (A2) replaced with

| iIQfMPQ (llowt(n(z) — b(6)) = x|| S w) 2 uP, u=0



proof

Simple enough proof: assume o, < de, and

In(y) — b(Bolll < o, [In(y) = n(2)]| < €n

Hence

16(6) — b(Bo)l| > 60 = [In(2) — b(O)]| > 60— €0 — Tn =t



proof

Simple enough proof: assume o, < de, and

In(y) — b(Bolll < o, [In(y) = n(2)]| < €n

Hence
16(0) — b(B)l| > 61 = [In(z) — B(O)]| > 60— €0 — 0n 1= t,
Also, if ||b(8) — b(00)|| < €n/3
In(y) = n(@)ll < lln(z) — b(O)|| + an +en/3
<en/3

and

f\|b(9)_b(00)”>§n Py (||T](Z) - b(@)” > tﬂ) dn(@)
f||b(0) b(Oo)l <en /3P (HTI(Z) - b(@)” < 6'1/3) dn(@)

< e, Ph(tao, )/ (0)dn(o

Me, (I[b(8) — b(B0)[| > dnly) <




Summary statistic and (in)consistency

Consider the moving average MA(2) model
ye =€+ 0161+ Oee2, e ~iiq N(0,1)

and
72§01S2, 91+92271,01792§1.



Summary statistic and (in)consistency

Consider the moving average MA(2) model
ye =€+ 0161+ Oee2, e ~iiq N(0,1)

and
72§01S2, 91+92271,01792§1.

summary statistics equal to sample autocovariances
T
) =T vy =01
t=1+j
with

mo(y) 5 Ely?] =1+ (o1)° + (602)° and  11(y) = Elyeye—1] = Ooa (1 + boz)



Summary statistic and (in)consistency

Consider the moving average MA(2) model
Ye =€+ 0161+ Oaee2, e ~iiq N(0,1)

and
—2391§2, 91+922—1,01—92§1.

summary statistics equal to sample autocovariances

;
() =T vy =01
t=1+j

with
m(y) > ED7] = 14 (601)° + (02)°  and  mi(y) = Elyeyer] = fon(1+ bo2)
For ABC target p- (0|m(y)) to be degenerate at 6
_ (14 (001)* + (602)° L+ (61)% + (62)?
0 = b(8) — b(6) = ( 0o1(1 + 6o2) ) B ( 01(1+ 62) )

must have unique solution 8 = 6



Summary statistic and (in)consistency

Consider the moving average MA(2) model
ye =6+ 0161+ Oree2, e ~jiq N(0,1)

and
—2<601<2,014+0,>-1,00 —6, <1.

summary statistics equal to sample autocovariances
T
ni(y) = T Z Yeyi—j Jj=0,1
t=1+j
with
mo(y) = Ely] = 1+ (001) + (602)> and  m(y) > Elyeye-1] = 0o (1 + 0o2)
Take 091 = .6, 602 = .2: equation has 2 solutions

01 =.6,0, =.2 and 0; = .5453, 0, ~ .3204



Asymptotic shape of posterior distribution

Three different regimes:
® o, = o(e,) — Uniform limit
® o, = ¢, —> perturbated Gaussian limit

©® o0, > ¢, — Gaussian limit



Assumptions

e (B1) Concentration of summary n: ¥,(0) € Rk>k is o(1)
Za(0) " H{n(2)—b(8)} = N (0. 1d),  (Za(6)Zn(00) 1)n = C°
e (B2) b(6) is C! and
16 — 60| < [[6(6) — b(6o)||

¢ (B3) Dominated convergence and

- Py(E,(0) " {n(z) — b(6)} € u+ B(0,un))
I|rr;n Hj () — p(u)



main result

Set ¥,(0) = 0,D(8) for 6 ~ 6y and Z° = ¥ ,(00) 1 (n(y) — 6o),
then under (Bl) and (B2)

e when e¢,o; ! — 400
Me,[e, (0 — 60) € Aly] = Us,(A), Bo = {x € R;||b'(60)"x|| < 1}
e when €,0, I ¢
HEn[zn(HO)_l(e - 00) ANS A|y] = QC(A)7 Qc 7& N
e when ¢,0,1 — 0 and (B3) holds, set
Vi, = [b/(80)] " Zn(60)b'(60)

then )
Me, [V, (0 — 60) — Z° € Aly] = ®(A),



intuition

Set x(0) = 0,50 — 6y) — Z° (k=1)
T =M, [, (6 — 6o) € Aly]

010-6y120, LioyeaPo (o7 (1(2) — b(6)) + x(B)]| < 7, r) p(6)d6
T J16-0y<0, Po (lon (n(z) — b(8)) + x(O)] < 0 'cr) p(8)d6

+ 0p(1)

o Ifey/opn>1:
Py (|0, (1(2z) — b(8)) + x(0)] < 0, en) = 1+0(1), iff |x| <ot
o Ifen/on = 0(1)

Py (low "(1(2) — b(0)) + x| < 0 en) = (x)orn(1 + 0(1))



more comments

e Surprising : U(—¢p, €n) limit when €, > o,



more comments

Surprising : U(—e€n, €5) limit when €, > o, but not so much
since €, = o(1) means concentration around 8¢ and

on = o(e€p) implies that b(6) — b(0) ~ n(z) — n(y)

again, there is no true need to control approximation of
f(n(y)|@) by a Gaussian density: merely a control of the
distribution

we have
Z° = Zo/b’(Gg) like the asym score

generalisation to the case where eigenvalues of ¥, are

dn,l 7& o 7& dn,k
behaviour of Eagc(0]y) as in Li & Fearnhead (2016)



even more comments

If (also) p(#) is Holder 8

0 1B/2]
Easc(Bly) — 60 = O-ni/ + Z €7 H;(80, p, b) +0(0n) + O(eh ™)
0o)

score for f(n(y |0) bias from threshold approx

o if €2 = o(c,) : Efficiency
o

b(eoy )

Eagc(0ly) — 00 = 0y
e the H;(6o, p, b)'s are deterministic

we gain nothing by getting a first crude A(y) = IAEABC(B\y)
for some n(y) and then rerun ABC with (y)



impact of the dimension of

dimension of 7(.) does not impact above result, but impacts
acceptance probability

o if e, =0(0p), k1 = dim(n(y)), k =dim(0) & ki > k

an =Pr(|ly — z|| < e,) = g fatk
o ife, 2 op
an=Pr(lly —z| < e,) < €
e If we choose «a,
o a, = o(ck) leads to ¢, = o, (a,0;, ¥)V k0 = o(a,)

1
e o, = o, leads to €, < a;

~



conclusion on ABC consistency

asymptotic description of ABC: different regimes depending
on €, op

no point in choosing €, arbitrarily small: just ¢, = o(op)
no gain in iterative ABC

results under weak conditions by studying g(n(z)|0)



conclusion on ABC consistency

asymptotic description of ABC: different regimes depending
on €, op

no point in choosing €, arbitrarily small: just ¢, = o(op)
no gain in iterative ABC

results under weak conditions by studying g(n(z)|0)
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