

Foundations of Clustering

Debarghya Ghoshdastidar

Theoretical Foundations of Artificial Intelligence Department of Informatics Technical University of Munich

What is clustering?

Whats are clusters?

Closely packed points

Whats are clusters?

Closely packed points

Points in same pattern

Whats are clusters?

Closely packed points

Points in same pattern

Similar / connected entities

 \ldots and others

Definition of cluster analysis

- Cambridge dictionary
 - A way of studying or examining large amounts of data to find groups that are **more like each other** than they are like the data in other group

Definition of cluster analysis

• Cambridge dictionary

A way of studying or examining large amounts of data to find groups that are **more like each other** than they are like the data in other group

• Wikipedia

The notion of a "cluster" cannot be precisely defined, which is one of the reasons why there are so many clustering algorithms

Definition of cluster analysis

• Cambridge dictionary

A way of studying or examining large amounts of data to find groups that are **more like each other** than they are like the data in other group

• Wikipedia

The notion of a "cluster" cannot be precisely defined, which is one of the reasons why there are so many clustering algorithms

• Clustering: Science or Art? [Luxburg et al 2012] Clustering should not be treated as an application-independent mathematical problem, but should always be studied in the context of its end-use

Clustering vs classification / estimation

• Formal objective

Classification: Yes, reduce number of errors

Clustering: None

Clustering vs classification / estimation

• Formal objective

Classification: Yes, reduce number of errors

Clustering: None

• Solved using optimisation

Classification: Mostly, via training

Clustering: Not clear for most algorithms / heuristics

Goal of this lecture

- Few popular clustering approaches
 - k-means and more (centroid based clustering)
 - Linkage methods (hierarchical clustering)
 - GMM, DBSCAN (density based clustering)
 - Deep networks
- What do these algorithms solve (formally)?
- How do we measure the goodness of clustering?

Practical guides

• Software documentation

• Blogs (easier than papers, reliability issues)

• Tutorial videos

Practical guides

- Software documentation
 - Python: sklearn clustering
 - HDBSCAN documentation. Comparing Python Clustering Algorithms
- Blogs (easier than papers, reliability issues)
 - towards data science
 - G. Seif. The 5 Clustering Algorithms Data Scientists Need to Know
- Tutorial videos

Centroid based clustering

Basic setup

- $\bullet\,$ Given n points, and number of clusters k
- Goal: Data compression
 - Find k centers that best represent the n points
 - Associate each point with nearest center

[Lloyd 1982]

$[\mathrm{Lloyd}\ 1982]$

2 Associate every data point to nearest center

- 2 Associate every data point to nearest center
- **③** Update centers to be means of clusters

- 2 Associate every data point to nearest center
- **③** Update centers to be means of clusters
- Reiterate steps 2 and 3 till convergence

- 2 Associate every data point to nearest center
- **③** Update centers to be means of clusters
- Reiterate steps 2 and 3 till convergence

- 2 Associate every data point to nearest center
- **③** Update centers to be means of clusters
- 0 Reiterate steps 2 and 3 till convergence

- O Choose any k locations as potential centers
- 2 Associate every data point to nearest center
- Update centers to be means of clusters
- Reiterate steps 2 and 3 till convergence

Questions

- Do the iterations converge?
- If yes, how long can it take to converge?

- What formal problem does k-means solve?
- Is the solution always 'good'?

k-means problem

- Given $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \in \mathbb{R}^p$
- For any k centers $c_1, \ldots, c_k \in \mathbb{R}^p$

k-means cost:
$$f(c_1, ..., c_k) = \sum_{j=1}^k \sum_{x_i \in C_j} ||x_i - c_j||^2$$

where
$$C_j = \{x \in \mathcal{X} : c_j \text{ is closest center for } x\}$$

 $\|x_i - c_j\| = \text{Euclidean distance}$

k-means problem

$[\mathrm{Lloyd}\ 1982]$

- Given $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \in \mathbb{R}^p$
- For any k centers $c_1, \ldots, c_k \in \mathbb{R}^p$

k-means cost:
$$f(c_1, ..., c_k) = \sum_{j=1}^k \sum_{x_i \in C_j} ||x_i - c_j||^2$$

where $C_j = \{x \in \mathcal{X} : c_j \text{ is closest center for } x\}$ $\|x_i - c_j\| = \text{Euclidean distance}$

k-means problem: minimise
$$f(c_1, \ldots, c_k)$$

Convergence of k-means iterations

- Each iteration of k-means reduces the k-means cost
- Iterations converge to a local minimum

Convergence of k-means iterations

- Each iteration of k-means reduces the k-means cost
- Iterations converge to a local minimum
- Can we converge to the global minimum (or close to it)?
 - Depends on the initial centers
 - Can be arbitrarily bad

Convergence of k-means iterations

- Each iteration of k-means reduces the k-means cost
- Iterations converge to a local minimum
- Can we converge to the global minimum (or close to it)?
 - Depends on the initial centers
 - Can be arbitrarily bad
- How long does it take to converge?
 - No non-trivial bound on number of iterations

Exercise: Sub-optimality of Lloyd's algorithm

• Consider 6 points in \mathbb{R}^2 ($\epsilon \ll 1$)

Exercise: Sub-optimality of Lloyd's algorithm

- Consider 6 points in \mathbb{R}^2 ($\epsilon \ll 1$)
- Optimal centers have k-means cost: $f_{opt} = 1.5\epsilon^2$

Exercise: Sub-optimality of Lloyd's algorithm

- Consider 6 points in \mathbb{R}^2 ($\epsilon \ll 1$)
- Optimal centers have k-means cost: $f_{opt} = 1.5\epsilon^2$
- No updates if we initialise with configuration on right

• Cost
$$f = 2\sqrt{1 + \epsilon^2} \gg f_{opt}$$

k-means++

[Arthur & Vassilvitskii 2007]

- Careful choice of centers (seeding)
- Define clusters given by chosen centers

k-means++

[Arthur & Vassilvitskii 2007]

- Careful choice of centers (seeding)
- Define clusters given by chosen centers
- Merits:
 - Not iterative; completes in O(kn)-runtime
 - Theoretical guarantee (not arbitrarily worse than f_{opt})

k-means++

[Arthur & Vassilvitskii 2007]

- Careful choice of centers (seeding)
- Define clusters given by chosen centers
- Merits:
 - Not iterative; completes in O(kn)-runtime
 - Theoretical guarantee (not arbitrarily worse than f_{opt})
- Standard implementations of k-means
 - Run k-means++, follows by few iterations of k-means

• Pick $x \in \mathcal{X}$ uniformly at random and set $c_1 = x$

- Pick $x \in \mathcal{X}$ uniformly at random and set $c_1 = x$
- $each For j = 2, \dots, k$
 - $\bullet \text{ Define } w(x) = \min_{r \in \{1, \dots, j-1\}} \|x c_r\|^2 \text{ for all } x \in \mathcal{X}$
 - **2** Sample $x \in \mathcal{X}$ according to probability $\propto w(x)$
 - \bullet Set $c_j = x$

k-means++ algorithm

- Pick $x \in \mathcal{X}$ uniformly at random and set $c_1 = x$
- $e For j = 2, \dots, k$
 - $\bullet \text{ Define } w(x) = \min_{r \in \{1, \dots, j-1\}} \|x c_r\|^2 \text{ for all } x \in \mathcal{X}$
 - **2** Sample $x \in \mathcal{X}$ according to probability $\propto w(x)$
 - \bullet Set $c_j = x$

k-means++ algorithm

- Pick $x \in \mathcal{X}$ uniformly at random and set $c_1 = x$
- - $\bullet \text{ Define } w(x) = \min_{r \in \{1, \dots, j-1\}} \|x c_r\|^2 \text{ for all } x \in \mathcal{X}$
 - **2** Sample $x \in \mathcal{X}$ according to probability $\propto w(x)$
 - \bullet Set $c_j = x$

(a) Define $C_j = \{x \in \mathcal{X} : c_j \text{ is closest center for } x\}$

Theory for k-means

• Worst-case approximation guarantee (definition):

An algorithm is b-factor approximation if, for any data, solution c_1, \ldots, c_k satisfies

$$f(c_1, \ldots, c_k) \leq b \cdot f_{opt}$$

Theory for k-means

• Worst-case approximation guarantee (definition):

An algorithm is b-factor approximation if, for any data, solution c_1, \ldots, c_k satisfies

$$f(c_1, \ldots, c_k) \leq b \cdot f_{opt}$$

• Guarantee for k-means++:

[Arthur & Vassilvitskii 2007]

$$f(c_1,\ldots,c_k) \leq 8(\log k+2) \cdot f_{opt}$$

averaged over randomness in algorithm

Theory for k-means

• Worst-case approximation guarantee (definition):

An algorithm is b-factor approximation if, for any data, solution c_1, \ldots, c_k satisfies

$$f(c_1, \ldots, c_k) \leq b \cdot f_{opt}$$

• Guarantee for k-means++:

[Arthur & Vassilvitskii 2007]

$$f(c_1,\ldots,c_k) \leq 8(\log k+2) \cdot f_{opt}$$

averaged over randomness in algorithm

• Impossibility result:

NP-Hard to find a worst-case approximation $b \leq 1.0013$

[Lee et at 2017]

Clustering in metric spaces

k-means problem: minimise
$$\sum_{c_1,\dots,c_k}^k \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - c_j\|^2$$

- Means can only be defined in vector spaces
 - It minimises squared distance to all points only in Hilbert space

Clustering in metric spaces

k-means problem: minimise
$$\sum_{c_1,\dots,c_k}^k \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - c_j\|^2$$

- Means can only be defined in vector spaces
 - It minimises squared distance to all points only in Hilbert space
- General metric space
 - Restrict centers to be points in data set \mathcal{X} , and replace Euclidean distance by metric d

k-medoid problem: minimise
$$\sum_{c_1,...,c_k \in \mathcal{X}} \sum_{j=1}^k \sum_{x_i \in C_j} d(x_i, c_j)$$

Hierarchical clustering

Hierarchical clustering (Foundations of Clustering)

Debarghya Ghoshdastidar 19/60

Hierarchical clustering

- Group data \mathcal{X} at different levels of granularity
 - Hierarchy of clusters
 - One can derive k large clusters or many small clusters
- Dendrogram: Binary tree depicting hierarchy of clusters

• Average linkage between two clusters C, C'

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

04

Average linkage

• Average linkage between two clusters C, C'

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

1. Start with *m* singleton clusters, $C_i = \{x_i\}$ (0)

O2

Average linkage

• Average linkage between two clusters C, C'

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

- 1. Start with *m* singleton clusters, $C_i = \{x_i\}$
- 2. Merge clusters C_i, C_j that have smallest $d_{avg}(C_i, C_j)$

02

• Average linkage between two clusters C, C'

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

- 1. Start with m singleton clusters, $C_i = \{x_i\}$
- 2. Merge clusters C_i, C_j that have smallest $d_{avg}(C_i, C_j)$
- 3. Repeat step-2 till all clusters merged

• Average linkage between two clusters C, C'

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

- 1. Start with m singleton clusters, $C_i = \{x_i\}$
- 2. Merge clusters C_i, C_j that have smallest $d_{avg}(C_i, C_j)$
- 3. Repeat step-2 till all clusters merged

• Average linkage between two clusters C, C^\prime

$$d_{avg}(C,C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x,x') \qquad d = \text{distance metric}$$

- 1. Start with m singleton clusters, $C_i = \{x_i\}$
- 2. Merge clusters C_i, C_j that have smallest $d_{avg}(C_i, C_j)$
- 3. Repeat step-2 till all clusters merged

Agglomerative vs divisive clustering

- Agglomerative clustering
 - Initialisation: Each cluster contains a single data
 - Recursion: Merge most similar clusters at each level
 - Example: Average linkage

Agglomerative vs divisive clustering

- Agglomerative clustering
 - Initialisation: Each cluster contains a single data
 - Recursion: Merge most similar clusters at each level
 - Example: Average linkage
- Divisive clustering
 - Initialisation: Entire set is a single cluster
 - Recursion: Split each cluster into smaller clusters
 - Example: Recursive k-means

- How can we measure goodness of obtained tree / dendrogram?
- Is hierarchical clustering an optimisation problem?

- How can we measure goodness of obtained tree / dendrogram?
- Is hierarchical clustering an optimisation problem?
- Approach 1:
 - Measure goodness / cost of induced k-way clustering for every $k \geq 2$

- How can we measure goodness of obtained tree / dendrogram?
- Is hierarchical clustering an optimisation problem?
- Approach 1:
 - Measure goodness / cost of induced k-way clustering for every $k\geq 2$
 - Example: No tree optimal for both k = 2, 3

- How can we measure goodness of obtained tree / dendrogram?
- Is hierarchical clustering an optimisation problem?
- Approach 2:
 - Define new cost / value function for a dendrogram
 - Formulate hierarchical clustering as optimisation over all dendrograms

Cost / value of dendrogram

- T = binary tree / dendrogram
 - value(T) = measure of goodness of clusters in the tree

• • • • • •

Cost / value of dendrogram

[Dasgupta 2016; Cohen-Addad et al 2018]

- T = binary tree / dendrogram
 - value(T) = measure of goodness of clusters in the tree
- N = node in tree = corresponding cluster
 - $N_1, N_2 =$ children of N

• • • • • •

Value function of dendrogram

[Cohen-Addad et al 2018]

• Distance between two nodes

$$d(N_1, N_2) = \sum_{x \in N_1} \sum_{x' \in N_2} d(x, x')$$

Value function of dendrogram

• Distance between two nodes

$$d(N_1, N_2) = \sum_{x \in N_1} \sum_{x' \in N_2} d(x, x')$$

• Value function for T

value(T) =
$$\sum_{N \in T} d(N_1, N_2) \cdot |N|$$

= $\sum_{x \neq x'} d(x, x') \cdot |\operatorname{lca}(x, x')|$

[Cohen-Addad et al 2018]

• lca(x, x') = smallest cluster / node containing both x, x' (least common ancestor)

Hierarchical clustering as optimisation

• High value(T) if

high $d(x, x') \implies x, x'$ merged higher in Tcloser $x, x' \implies x, x'$ merged towards bottom of T

Hierarchical clustering as optimisation

• High value(T) if

high $d(x, x') \implies x, x'$ merged higher in Tcloser $x, x' \implies x, x'$ merged towards bottom of T

• Formal hierarchical clustering problem

 $\underset{T = \text{ binary tree}}{\text{maximise}} \text{ value}(T)$

Hierarchical clustering as optimisation

• High value(T) if

high $d(x, x') \implies x, x'$ merged higher in Tcloser $x, x' \implies x, x'$ merged towards bottom of T

• Formal hierarchical clustering problem

 $\underset{T = \text{ binary tree}}{\text{maximise}} \text{ value}(T)$

• Approximation guarantee for average linkage

$$\operatorname{value}\left(\widehat{T}_{avg-linkage}\right) \geq \frac{1}{2} \cdot \max_{T} \operatorname{value}(T)$$

Deep clustering

Deep clustering (Foundations of Clustering)

Motivation

- Drawback of k-means:
 - k-means can find only non-overlapping spherical clusters

Motivation

- Drawback of k-means:
 - k-means can find only non-overlapping spherical clusters
- Sometimes we can transform the data to get this

Few characteristics of deep learning

• Learn a complex function $x \mapsto f(x)$ suitable for tasks

Few characteristics of deep learning

- Learn a complex function $x \mapsto f(x)$ suitable for tasks
- Representation learning
 - Learn representation f(x) in unsupervised manner (autoencoder)
 - $\bullet\,$ Can also learn a generative model for x

Few characteristics of deep learning

- Learn a complex function $x \mapsto f(x)$ suitable for tasks
- Representation learning
 - Learn representation f(x) in unsupervised manner (autoencoder)
 - ${\scriptstyle \bullet }$ Can also learn a generative model for x
- Every problem boils down to a large optimisation

Clustering with Autoencoder

 $[{\rm Xie}~{\rm et}~{\rm al}~2016;$ Dizaji et al2017]

• Autoencoder finds low dimensional representation by minimising reconstruction error

Clustering with Autoencoder

 $[{\rm Xie}~{\rm et}~{\rm al}~2016;$ Dizaji et al2017]

- Autoencoder finds low dimensional representation by minimising reconstruction error
- Cluster the transformed data by minimising clustering cost

Dizaji et al 2017

Clustering with Autoencoder

 $[{\rm Xie}~{\rm et}~{\rm al}~2016;~{\rm Dizaji}~{\rm et}~{\rm al}~2017]$

- Autoencoder finds low dimensional representation by minimising reconstruction error
- Cluster the transformed data by minimising clustering cost

Clustering with Autoencoder

$[{\rm Xie}~{\rm et}~{\rm al}~2016;$ Dizaji et al2017]

- Autoencoder finds low dimensional representation by minimising reconstruction error
- Cluster the transformed data by minimising clustering cost
- Different ways to minimise both L_R and L_C

Clustering with Autoencoder

$[{\rm Xie}~{\rm et}~{\rm al}~2016;$ Dizaji et al2017]

- Autoencoder finds low dimensional representation by minimising reconstruction error
- Cluster the transformed data by minimising clustering cost
- Different ways to minimise both L_R and L_C
- No theoretical guarantee
- Nice overview: P. Dahal. Deep clustering

Density based clustering

- Previous perspective:
 - Observed data are some fixed entities
 - Clustering = optimisation problems

- Previous perspective:
 - Observed data are some fixed entities
 - Clustering = optimisation problems
- Statistical view:
 - Observations are manifestations of hidden laws of nature

... often corrupted by noise

- Previous perspective:
 - Observed data are some fixed entities
 - Clustering = optimisation problems
- Statistical view:
 - Observations are manifestations of hidden laws of nature

... often corrupted by noise

• Data = independent samples from some probabilistic model

- Previous perspective:
 - Observed data are some fixed entities
 - Clustering = optimisation problems
- Statistical view:
 - Observations are manifestations of hidden laws of nature

... often corrupted by noise

- Data = independent samples from some probabilistic model ... model has cluster structure (mixture model)
- Clustering = (part of) model estimation

Gaussian mixture model

• Assume data = samples from mixture of *d*-variate Gaussians

Gaussian mixture model

- Assume data = samples from mixture of d-variate Gaussians
- Fit GMM model: $\mathcal{D}_x = w_1 \mathcal{N}_d(\mu_1, \Sigma_1) + w_2 \mathcal{N}_d(\mu_2, \Sigma_2) + \ldots + w_k \mathcal{N}_d(\mu_k, \Sigma_k)$

Gaussian mixture model

- Assume data = samples from mixture of d-variate Gaussians
- Fit GMM model: $\mathcal{D}_x = w_1 \mathcal{N}_d(\mu_1, \Sigma_1) + w_2 \mathcal{N}_d(\mu_2, \Sigma_2) + \ldots + w_k \mathcal{N}_d(\mu_k, \Sigma_k)$
- Typically solved via Expectation Maximisation (EM)

GMM estimation via k-means

• Data = x_1, \ldots, x_n

• Define $Z \in \{0,1\}^{n \times k}$: $Z_{ij} = 1$ if and only if x_i assigned to cluster j

GMM estimation via k-means

- Data = x_1, \ldots, x_n
- Define $Z \in \{0,1\}^{n \times k}$: $Z_{ij} = 1$ if and only if x_i assigned to cluster j
- Lloyd's k-means: Iterate between
 - 1. (for every i) Z-update : $Z_{ij} = 1$ if x_i is closest to μ_j , and 0 for other j

2. (for every j)
$$\mu$$
-update: $\mu_j = \frac{\sum_{i=1}^n Z_{ij} x_i}{\sum_{i=1}^n Z_{ij}}$

GMM estimation via k-means

- Data = x_1, \ldots, x_n
- Define $Z \in \{0,1\}^{n \times k}$: $Z_{ij} = 1$ if and only if x_i assigned to cluster j
- GMM estimation via k-means: Iterate between
 - 1. (for every i) Z-update : $Z_{ij} = 1$ if x_i is closest to μ_j , and 0 for other j

2. (for every
$$j$$
) μ -update: $\mu_j = \frac{\sum_{i=1}^n Z_{ij} x_i}{\sum_{i=1}^n Z_{ij}}$
 Σ -update: $\Sigma_j = \frac{\sum_{i=1}^n Z_{ij} (x_i - \mu_j) (x_i - \mu_j)^T}{\sum_{i=1}^n Z_{ij}}$ w -update: $w_j = \frac{\sum_{i=1}^n Z_{ij}}{n}$

• Expectation-maximisation (EM):

[Dempster et al 1977]

• Iterative solution for maximum likelihood estimation (MLE) of model parameters

• Expectation-maximisation (EM):

[Dempster et al 1977]

- Iterative solution for maximum likelihood estimation (MLE) of model parameters
- GMM has soft cluster assignments

- Expectation-maximisation (EM):
 - Iterative solution for maximum likelihood estimation (MLE) of model parameters
- GMM has soft cluster assignments

$$Z_{ij} = \operatorname{Prob} \left(x_i \sim \mathcal{N}_d(\mu_j, \Sigma_j) \mid w, \mu, \Sigma \right)$$

[Dempster et al 1977]

- Expectation-maximisation (EM):
 - Iterative solution for maximum likelihood estimation (MLE) of model parameters
- GMM has soft cluster assignments

$$Z_{ij} = \operatorname{Prob}(x_i \sim \mathcal{N}_d(\mu_j, \Sigma_j) \mid w, \mu, \Sigma)$$
$$Z\text{-update in EM:} \quad Z_{ij} = \frac{w_j \exp\left(-(x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right)}{\sum_{l=1}^k w_j \exp\left(-(x_i - \mu_l)^T \Sigma_l^{-1} (x_i - \mu_l)\right)}$$

[Dempster et al 1977]

- Expectation-maximisation (EM):
 - Iterative solution for maximum likelihood estimation (MLE) of model parameters
- GMM has soft cluster assignments

$$Z_{ij} = \operatorname{Prob}\left(x_i \sim \mathcal{N}_d(\mu_j, \Sigma_j) \mid w, \mu, \Sigma\right)$$
$$Z\text{-update in EM:} \quad Z_{ij} = \frac{w_j \exp\left(-(x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right)}{\sum_{l=1}^k w_j \exp\left(-(x_i - \mu_l)^T \Sigma_l^{-1} (x_i - \mu_l)\right)}$$

[Dempster et al 1977]

• $w,\,\mu$ and Σ updates in EM: Same as previous slide

Limitations of GMM (and k-means)

• Finds only elliptical clusters

Limitations of GMM (and k-means)

• Finds only elliptical clusters

• Cannot deal with outliers

Limitations of GMM (and k-means)

• Finds only elliptical clusters

• Cannot deal with outliers

• Need to know number of clusters

- Nonparametric = No parametric assumption on data or clusters
- Examples: [?] GMM [?] k-means [?] average linkage

- Nonparametric = No parametric assumption on data or clusters
- Examples: $[\times]$ GMM [!!] k-means $[\checkmark]$ average linkage

- Nonparametric = No parametric assumption on data or clusters
- Examples: $[\times]$ GMM [!!] k-means $[\checkmark]$ average linkage
- Nonparametric density based clustering:
 - Data = independent samples from a probabilistic model
 - No parametric assumption on model, not even k

- Nonparametric = No parametric assumption on data or clusters
- Examples: $[\times]$ GMM [!!] k-means $[\checkmark]$ average linkage
- Nonparametric density based clustering:
 - Data = independent samples from a probabilistic model
 - No parametric assumption on model, not even k
 - Example: DBSCAN

[Ester et al 1996]

Density-based Spatial Clustering of Applications with Noise

Philosophy behind DBSCAN

- Clusters are high density regions
 - ... and points in low density region are outliers

Philosophy behind DBSCAN

- Clusters are high density regions
 - ... and points in low density region are outliers
- Estimate the density locally, around a point
 - Exercise: Consider ball $B(x,\epsilon)$ centred at x and radius ϵ

$$x \sim \mathcal{D} \quad \Longrightarrow \quad \mathrm{pdf}_{\mathcal{D}}(x) \approx \frac{\#\mathrm{points \ in \ } B(x, \epsilon)}{\mathrm{total \ } \#\mathrm{points \ }} \cdot \frac{1}{\mathrm{volume}(B(x, \epsilon))}$$

Philosophy behind DBSCAN

- Clusters are high density regions
 - \ldots and points in low density region are outliers
- Estimate the density locally, around a point
 - Exercise: Consider ball $B(x,\epsilon)$ centred at x and radius ϵ

$$x \sim \mathcal{D} \quad \Longrightarrow \quad \mathrm{pdf}_{\mathcal{D}}(x) \approx \frac{\#\mathrm{points \ in } B(x, \epsilon)}{\mathrm{total \ \#points}} \cdot \frac{1}{\mathrm{volume}(B(x, \epsilon))}$$

Can threshold pdf_D(x) to decide if point inside cluster or outlier
 ... or threshold based on #points in B(x, ε)

Debarghya Ghoshdastidar 38 / 60

[Ester et al 1996]

• Hyperparameters: Radius = ϵ , threshold = minPts

[Ester et al 1996]

- Hyperparameters: Radius = ϵ , threshold = minPts
- Types of points
 - Core point: #points in $B(x, \epsilon) \ge$ minPts
 - Border point: #points in $B(x,\epsilon) < \text{minPts}$, but lies in ball of core point
 - Outlier: neither core or border point

[Ester et al 1996]

1. Select any **core point** x that is not clustered yet

[Ester et al 1996]

- 1. Select any **core point** x that is not clustered yet
- 2. Assign x to a new cluster

DBSCAN

i. Assign all points in $B(x, \epsilon)$ to same cluster

[Ester et al 1996]

DBSCAN

- 1. Select any **core point** x that is not clustered yet
- 2. Assign x to a new cluster
 - i. Assign all points in $B(x, \epsilon)$ to same cluster
 - ii. If $y \in B(x, \epsilon)$ is core point
 - Go to step-i with $B(y, \epsilon)$

- 1. Select any **core point** x that is not clustered yet
- 2. Assign x to a new cluster
 - i. Assign all points in $B(x, \epsilon)$ to same cluster
 - ii. If $y \in B(x, \epsilon)$ is core point
 - Go to step-i with $B(y,\epsilon)$
 - iii. Propagate labels (i ii) till we cannot reach any more core point

- 1. Select any **core point** x that is not clustered yet
- 2. Assign x to a new cluster
 - i. Assign all points in $B(x, \epsilon)$ to same cluster
 - ii. If $y \in B(x, \epsilon)$ is core point
 - Go to step-i with $B(y, \epsilon)$
 - iii. Propagate labels (i ii) till we cannot reach any more core point
- 3. Repeat steps 1-2 till there is no more unclustered core point

• • • • =

- GMM is theoriticians' favourite model [Dasgupta 1999; Vankadara & Ghoshdastidar 2020]
 - Used to analyse many clustering algorithms
 - Sample data from GMM, and prove algorithms can correctly cluster them

- GMM is theoriticians' favourite model [Dasgupta 1999; Vankadara & Ghoshdastidar 2020]
 - Used to analyse many clustering algorithms
 - Sample data from GMM, and prove algorithms can correctly cluster them
- Less understanding of clustering mixture of nonparametric distributions

- GMM is theoriticians' favourite model [Dasgupta 1999; Vankadara & Ghoshdastidar 2020]
 - Used to analyse many clustering algorithms
 - Sample data from GMM, and prove algorithms can correctly cluster them
- Less understanding of clustering mixture of nonparametric distributions
- Huge literature on performance / convergence of EM algorithm

- GMM is theoriticians' favourite model [Dasgupta 1999; Vankadara & Ghoshdastidar 2020]
 - Used to analyse many clustering algorithms
 - Sample data from GMM, and prove algorithms can correctly cluster them
- Less understanding of clustering mixture of nonparametric distributions
- Huge literature on performance / convergence of EM algorithm
- DBSCAN finds level sets of probability distributions [Sriperumbudur & Steinwart 2012]

Semidefinite programming and similarity based clustering

Semidefinite programming and similarity based clustering (Foundations of Clustering)

• Co-occurrence matrix $M \in \mathbb{R}^{n \times n}$ for clusters C_1, \ldots, C_k

$$M_{ij} = \begin{cases} \frac{1}{|C_{\ell}|} & \text{if both } x_i, x_j \in C_{\ell} \\ 0 & \text{if } x_i \text{ and } x_j \text{ in different clusters} \end{cases}$$

• Co-occurrence matrix $M \in \mathbb{R}^{n \times n}$ for clusters C_1, \ldots, C_k

$$M_{ij} = \begin{cases} \frac{1}{|C_{\ell}|} & \text{if both } x_i, x_j \in C_{\ell} \\ 0 & \text{if } x_i \text{ and } x_j \text{ in different clusters} \end{cases}$$

- Define $X \in \mathbb{R}^{n \times p}$ where rows are data points x_1, \ldots, x_n
- Rewriting k-means cost (exercise)

$$\sum_{j=1}^{k} \sum_{x_i \in C_j} \|x_i - c_j\|^2 = \|X - MX\|_F^2 \qquad \|A\|_F^2 := \sum_{i,j} A_{ij}^2$$

• Equivalent k-means optimisation

 $\underset{M \in \mathbb{R}^{n \times n}}{\text{maximise}} \quad \text{trace} \left(X X^T M \right) \qquad \qquad \text{trace}(A) = \sum_i A_{ii}$

s.t. M is co-occurrence for some C_1, \ldots, C_k

• Equivalent k-means optimisation

 $\begin{array}{ll} \underset{M \in \mathbb{R}^{n \times n}}{\text{maximise}} & \text{trace} \left(X X^T M \right) & \text{trace}(A) = \sum_i A_{ii} \\ \text{s.t. } M \text{ is co-occurrence for some } C_1, \ldots, C_k \end{array}$

- Above is still combinatorial problem (computationally expensive)
- Relaxation: Replace constraint by simpler condition satisfied by co-occurrence matrix

• Equivalent k-means optimisation

 $\underset{M \in \mathbb{R}^{n \times n}}{\operatorname{maximise}} \operatorname{trace} \left(X X^T M \right)$ $\operatorname{trace}(A) = \sum_{i} A_{ii}$ s.t. M is co-occurrence for some C_1, \ldots, C_k

- Above is still combinatorial problem (computationally expensive)
- Relaxation: Replace constraint by simpler condition satisfied by co-occurrence matrix
 - (i) M has non-negative entries
 - (ii) M is positive semi-definite (iv) M has row sum 1

(iii) trace(M) = k

Semidefinite programming (SDP)

- Optimisation over positive semidefinite (psd) matrices
- Objective and other constraints linear

Semidefinite programming (SDP)

- Optimisation over positive semidefinite (psd) matrices
- Objective and other constraints linear
- Convex optimisation problem:
 - Many practical software, including few specific for SDP

Semidefinite programming (SDP)

- Optimisation over positive semidefinite (psd) matrices
- Objective and other constraints linear
- Convex optimisation problem:
 - Many practical software, including few specific for SDP
- SDP relaxation of k-means:

[Peng & Wei, 2007]

$$\begin{array}{ll} \underset{M \text{ is psd}}{\text{maximise}} & \text{trace}\left(XX^{T}M\right)\\ \text{s.t.} & M_{ij} \geq 0, \quad \sum_{j} M_{ij} = 1, \quad \text{trace}(M) = k \end{array}$$

Drawbacks of k-means problem

- k-means produces linear cluster boundaries
 - Can only find convex non-overlapping clusters

• • • • • •

Drawbacks of k-means problem

- k-means produces linear cluster boundaries
 - Can only find convex non-overlapping clusters
- k-means requires data representation x_1, \ldots, x_n
 - What happens if we can only observe similarity between two items?

Similarity (kernel) matrix

• $S = n \times n$ symmetric matrix

 S_{ij} = similarity (kernel) function between x_i and x_j

- $\bullet~S$ could be computed from data or directly observed
- Examples:

• Gaussian kernel:
$$S_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$

• Graph: S = adjacency matrix of a similarity graph

Similarity based clustering

• Given $S \in \mathbb{R}^{n \times n}$, find

k-clustering of n items or co-occurence matrix M

Similarity based clustering

• Given $S \in \mathbb{R}^{n \times n}$, find

k-clustering of n items or co-occurence matrix M

• k-means uses a linear similarity

$$S_{ij} = x_i^T x_j$$
 or $S = X X^T$

Similarity based clustering

• Given $S \in \mathbb{R}^{n \times n}$, find

k-clustering of n items or co-occurence matrix M

• k-means uses a linear similarity

$$S_{ij} = x_i^T x_j$$
 or $S = X X^T$

• Similarity / kernel SDP:

[Vankadara & Ghoshdastidar 2020]

$$\begin{array}{ll} \underset{M \text{ is psd}}{\text{maximise}} & \text{trace}\left(SM\right)\\ \text{s.t.} & M_{ij} \geq 0, \quad \sum_{j} M_{ij} = 1, \quad \text{trace}(M) = k \end{array}$$

Example

• S = similarity based on mutual 2-nearest neighbours (2-NN)

$$S_{ij} = \begin{cases} 1 & \text{if } i = j \\ 1 & \text{if } x_i \text{ is 2-NN of } x_j \text{ and } x_j \text{ is one of 2-NN of } x_i \\ 0 & \text{otherwise} \end{cases}$$

Co-occurrence matrix M

Obtained clusters

Semidefinite programming and similarity based clustering (Foundations of Clustering)

Remarks

- Getting clusters from M
 - Use clustering (example: direct k-means on rows of M)

Remarks

- Getting clusters from M
 - Use clustering (example: direct k-means on rows of M)
- Unknown number of clusters

[Yan et al 2018, Perrot et al 2020]

s.t. $M_{ij} \ge 0$, $\sum_{j} M_{ij} = 1$

 $\lambda =$ hyperparameter

Remarks

- Getting clusters from M
 - Use clustering (example: direct k-means on rows of M)
- Unknown number of clusters [Yan et al 2018, Perrot et al 2020]
 - $\lambda \text{-SDP:} \qquad \underset{M \text{ is psd}}{\text{maximise }} \operatorname{trace} (SM) \lambda \cdot \operatorname{trace}(M)$

s.t.
$$M_{ij} \ge 0$$
, $\sum_j M_{ij} = 1$

 $\lambda =$ hyperparameter

- Theoretical guarantees for similarity SDP
 - Graph / Ordinal data clustering

[Yan et al 2018, Perrot et al 2020]

How good is the clustering?

Clustering metrics

• Implicit goodness of clustering

• Comparison with ground truth

Clustering metrics

- Implicit goodness of clustering
 - Define measure of goodness of clusters
 - Tied to our belief of how good clusters should look like
 - Example: k-means cost, silhouette score
- Comparison with ground truth

Clustering metrics

- Implicit goodness of clustering
 - Define measure of goodness of clusters
 - Tied to our belief of how good clusters should look like
 - Example: k-means cost, silhouette score
- Comparison with ground truth
 - Measure difference between two clustering / co-occurrences
 - Example: Classification error (up to permutation of labels) Adjusted Rand index (ARI) Normalsed mutual information (NMI)

Clustering stability

[Ben-David et al 2006]

- If data is perturbed slightly, clustering should not change a lot
- Stability: Distance between clusterings of datasets sampled from same distrbution

Clustering stability

[Ben-David et al 2006]

- If data is perturbed slightly, clustering should not change a lot
- Stability: Distance between clusterings of datasets sampled from same distrbution

Different runs of k-means++ give different clusterings

Similarity SDP returns stable clustering

Finding good and stable clusters

• How do we know if algorithm returns (good) stable clusters?

Finding good and stable clusters

- How do we know if algorithm returns (good) stable clusters?
- Theoretical analysis of algorithms:
 - Data has good clustering. Find this true clustering
 - Data sampled from mixture models

[Balcan et al 2013]

[Dasgupta 1999]

Finding good and stable clusters

- How do we know if algorithm returns (good) stable clusters?
- Theoretical analysis of algorithms:
 - Data has good clustering. Find this true clustering
 - Data sampled from mixture models
- Measuring stability:
 - Verify if obtained clustering is good and stable

[Dasgupta 1999]

[Meila 2018]

Verifying 'goodness' via optimisation

[Meila 2018]

• Clustering via minimising cost (k-means)

cost(M) = cost achieved by co-occurrence M

• Distance between clusterings = $||M - M'||_F$

Verifying 'goodness' via optimisation

[Meila 2018]

• Clustering via minimising cost (k-means)

cost(M) = cost achieved by co-occurrence M

- Distance between clusterings = $||M M'||_F$
- Measure instability of solution M:

$$\epsilon(M) = \max_{\text{co-occurrence } M'} \left\{ \|M - M'\|_F : \operatorname{cost}(M') \le \operatorname{cost}(M) \right\}$$

- How far are other clusterings which are as good as M?
- For some algorithms, this can be solved via SDP

References

References (Foundations of Clustering)

- D. Arthur, S. Vassilvitskii (2007). k-means++: The advantages of careful seeding. SODA
- M.-F. Balcan, A. Blum, A. Gupta (2013). Clustering under approximation stability. Journal of the ACM
- S. Ben-David, U. von Luxburg, D. Pál (2006). A Sober Look at Clustering Stability. COLT
- V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, C. Mathieu (2018). Hierarchical clustering: objective functions and algorithms. *SODA*
- S. Dasgupta (1999). Learning mixtures of Gaussians. FOCS

- S. Dasgupta (2016). A cost function for similarity-based hierarchical clustering. STOC
- A. P. Dempster, N. M. Laird, D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*
- S K. G. Dizaji, A. Herandi, C. Deng, W. Cai, H. Huang (2017). Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. *ICCV*
- M. Ester, H.-P. Kriegel, J. Sander, X. Xu (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. *KDD*
- E. Lee, M. Schmidt, J. Wright (2017). Improved and simplified inapproximability for k-means. *Information Processing Letters*

- S. P. Lloyd (1982). Least squares quantization in PCM. *IEEE Transactions on Information Theory*
- U. v. Luxburg, R. C. Williamson, I. Guyon (2012). Clustering: Science or art? Workshop on Unsupervised and Transfer Learning
- M. Meila (2018). How to tell when a clustering is (approximately) correct using convex relaxations. *Neurips*
- J. Peng, Y. Wei (2007). Approximating k-means-type clustering via semidefinite programming. SIAM Journal on Optimization
- M. Perrot. P. Esser, D. Ghoshdastidar (2020). Near-optimal comparison based clustering. *Neurips*

- B. Sriperumbudur, I. Steinwart (2012). Consistency and Rates for Clustering with DBSCAN. AISTATS
- L. Vankadara, D. Ghoshdastidar (2020). On the optimality of kernels for high-dimensional clustering. AISTATS
- S. Xie, R. Girshick, A. Farhadi (2016). Unsupervised deep embedding for clustering analysis. *ICML*
- B. Yan, P. Sarkar, X. Cheng (2018). Provable estimation of the number of blocks in block models. AISTATS