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What is clustering?

What is clustering? (Foundations of Clustering) Debarghya Ghoshdastidar 2 / 60



Whats are clusters?

Closely packed points

Points in same pattern Similar / connected entities

. . . and others
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Definition of cluster analysis

Cambridge dictionary
A way of studying or examining large amounts of data to find groups that are more
like each other than they are like the data in other group

Wikipedia
The notion of a “cluster” cannot be precisely defined, which is one of the reasons why
there are so many clustering algorithms

Clustering: Science or Art? [Luxburg et al 2012]

Clustering should not be treated as an application-independent mathematical
problem, but should always be studied in the context of its end-use
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Clustering vs classification / estimation

Formal objective

Classification: Yes, reduce number of errors

Clustering: None

Solved using optimisation

Classification: Mostly, via training

Clustering: Not clear for most algorithms / heuristics
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Goal of this lecture

Few popular clustering approaches

k-means and more (centroid based clustering)

Linkage methods (hierarchical clustering)

GMM, DBSCAN (density based clustering)

Deep networks

What do these algorithms solve (formally)?

How do we measure the goodness of clustering?

What is clustering? (Foundations of Clustering) Debarghya Ghoshdastidar 6 / 60



Practical guides

Software documentation

Python: sklearn clustering

HDBSCAN documentation. Comparing Python Clustering Algorithms

Blogs (easier than papers, reliability issues)

towards data science

G. Seif. The 5 Clustering Algorithms Data Scientists Need to Know

Tutorial videos
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Centroid based clustering
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Basic setup

Given n points, and number of clusters k

Goal: Data compression

Find k centers that best represent the n points

Associate each point with nearest center
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k-means algorithm [Lloyd 1982]

1 Choose any k locations as potential centers

2 Associate every data point to nearest center

3 Update centers to be means of clusters

4 Reiterate steps 2 and 3 till convergence
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Questions

Do the iterations converge?

If yes, how long can it take to converge?

What formal problem does k-means solve?

Is the solution always ‘good’?
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k-means problem [Lloyd 1982]

Given X = {x1, x2, . . . , xn} ∈ Rp

For any k centers c1, . . . , ck ∈ Rp

k-means cost: f(c1, . . . , ck) =

k∑

j=1

∑

xi∈Cj

‖xi − cj‖2

where Cj = {x ∈ X : cj is closest center for x}
‖xi − cj‖ = Euclidean distance

k-means problem: minimise
c1,...,ck

f(c1, . . . , ck)

Centroid based clustering (Foundations of Clustering) Debarghya Ghoshdastidar 12 / 60



k-means problem [Lloyd 1982]

Given X = {x1, x2, . . . , xn} ∈ Rp

For any k centers c1, . . . , ck ∈ Rp

k-means cost: f(c1, . . . , ck) =

k∑

j=1

∑

xi∈Cj

‖xi − cj‖2

where Cj = {x ∈ X : cj is closest center for x}
‖xi − cj‖ = Euclidean distance

k-means problem: minimise
c1,...,ck

f(c1, . . . , ck)

Centroid based clustering (Foundations of Clustering) Debarghya Ghoshdastidar 12 / 60



Convergence of k-means iterations

Each iteration of k-means reduces the k-means cost

Iterations converge to a local minimum

Can we converge to the global minimum (or close to it)?

Depends on the initial centers

Can be arbitrarily bad

How long does it take to converge?

No non-trivial bound on number of iterations
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Exercise: Sub-optimality of Lloyd’s algorithm

Consider 6 points in R2 (ε� 1)

Optimal centers have k-means cost: fopt = 1.5ε2

No updates if we initialise with configuration on right

Cost f = 2
√

1 + ε2 � fopt

1 1
𝜖

1 1
𝜖

1 1
𝜖

Six points Optimal centers Local optimum
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k-means++ [Arthur & Vassilvitskii 2007]

Careful choice of centers (seeding)

Define clusters given by chosen centers

Merits:

Not iterative; completes in O(kn)-runtime

Theoretical guarantee (not arbitrarily worse than fopt)

Standard implementations of k-means

Run k-means++, follows by few iterations of k-means
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k-means++ algorithm

1 Pick x ∈ X uniformly at random and set c1 = x

2 For j = 2, . . . , k

1 Define w(x) = min
r∈{1,...,j−1}

‖x− cr‖2 for all x ∈ X

2 Sample x ∈ X according to probability ∝ w(x)

3 Set cj = x

3 Define Cj = {x ∈ X : cj is closest center for x}
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Theory for k-means

Worst-case approximation guarantee (definition):

An algorithm is b-factor approximation if, for any data, solution c1, . . . , ck satisfies

f(c1, . . . , ck) ≤ b · fopt

Guarantee for k-means++: [Arthur & Vassilvitskii 2007]

f(c1, . . . , ck) ≤ 8(log k + 2) · fopt

averaged over randomness in algorithm

Impossibility result: [Lee et at 2017]

NP-Hard to find a worst-case approximation b ≤ 1.0013
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Clustering in metric spaces

k-means problem: minimise
c1,...,ck

k∑

j=1

∑

xi∈Cj

‖xi − cj‖2

Means can only be defined in vector spaces

It minimises squared distance to all points only in Hilbert space

General metric space

Restrict centers to be points in data set X , and replace Euclidean distance by metric d

k-medoid problem: minimise
c1,...,ck∈X

k∑
j=1

∑
xi∈Cj

d(xi, cj)
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Hierarchical clustering
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Hierarchical clustering
Group data X at different levels of granularity

Hierarchy of clusters

One can derive k large clusters or many small clusters

Dendrogram: Binary tree depicting hierarchy of clusters

Clusters at different levels Dendrogram / Tree
Hierarchical clustering (Foundations of Clustering) Debarghya Ghoshdastidar 20 / 60



Average linkage

Average linkage between two clusters C,C ′

davg(C,C ′) =
1

|C| · |C ′|
∑

x∈C,x′∈C′
d(x, x′) d = distance metric

1. Start with m singleton clusters, Ci = {xi}

2. Merge clusters Ci, Cj that have smallest davg(Ci, Cj)

3. Repeat step-2 till all clusters merged
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Agglomerative vs divisive clustering

Agglomerative clustering

Initialisation: Each cluster contains a single data

Recursion: Merge most similar clusters at each level

Example: Average linkage

Divisive clustering

Initialisation: Entire set is a single cluster

Recursion: Split each cluster into smaller clusters

Example: Recursive k-means
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Analysing hierarchical clustering

How can we measure goodness of obtained tree / dendrogram?

Is hierarchical clustering an optimisation problem?
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Analysing hierarchical clustering

How can we measure goodness of obtained tree / dendrogram?

Is hierarchical clustering an optimisation problem?

Approach 1:

Measure goodness / cost of induced k-way clustering for every k ≥ 2
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Analysing hierarchical clustering

How can we measure goodness of obtained tree / dendrogram?

Is hierarchical clustering an optimisation problem?

Approach 1:

Measure goodness / cost of induced k-way clustering for every k ≥ 2

Example: No tree optimal for both k = 2, 3 optimal 3 clusters

optimal 2 clusters
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Analysing hierarchical clustering

How can we measure goodness of obtained tree / dendrogram?

Is hierarchical clustering an optimisation problem?

Approach 2:

Define new cost / value function for a dendrogram

Formulate hierarchical clustering as optimisation over all dendrograms
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Cost / value of dendrogram [Dasgupta 2016; Cohen-Addad et al 2018]

T = binary tree / dendrogram

value(T ) = measure of goodness of clusters in the tree

N = node in tree = corresponding cluster

N1, N2 = children of N
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Value function of dendrogram [Cohen-Addad et al 2018]

Distance between two nodes

d(N1, N2) =
∑

x∈N1

∑

x′∈N2

d(x, x′)

Value function for T

value(T ) =
∑

N∈T
d(N1, N2) · |N |

=
∑

x6=x′

d(x, x′) · |lca(x, x′)|

lca(x, x′) = smallest cluster / node containing both x, x′ (least common ancestor)
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Hierarchical clustering as optimisation

High value(T ) if

high d(x, x′) =⇒ x, x′ merged higher in T

closer x, x′ =⇒ x, x′ merged towards bottom of T

Formal hierarchical clustering problem

maximise
T =binary tree

value(T )

Approximation guarantee for average linkage

value
(
T̂avg−linkage

)
≥ 1

2
·max

T
value(T )
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Deep clustering
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Motivation

Drawback of k-means:

k-means can find only non-overlapping spherical clusters

Sometimes we can transform the data to get this

x f(x) = ‖x‖
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Few characteristics of deep learning

Learn a complex function x 7→ f(x) suitable for tasks

Representation learning

Learn representation f(x) in unsupervised manner (autoencoder)

Can also learn a generative model for x

Every problem boils down to a large optimisation
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Clustering with Autoencoder [Xie et al 2016; Dizaji et al 2017]

Autoencoder finds low dimensional representation by minimising reconstruction error

Cluster the transformed data by minimising clustering cost
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Clustering with Autoencoder [Xie et al 2016; Dizaji et al 2017]

Autoencoder finds low dimensional representation by minimising reconstruction error

Cluster the transformed data by minimising clustering cost [Xie et al 2016]
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Clustering with Autoencoder [Xie et al 2016; Dizaji et al 2017]

Autoencoder finds low dimensional representation by minimising reconstruction error

Cluster the transformed data by minimising clustering cost [Dizaji et al 2017]
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Clustering with Autoencoder [Xie et al 2016; Dizaji et al 2017]

Autoencoder finds low dimensional representation by minimising reconstruction error

Cluster the transformed data by minimising clustering cost

Different ways to minimise both LR and LC
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Clustering with Autoencoder [Xie et al 2016; Dizaji et al 2017]

Autoencoder finds low dimensional representation by minimising reconstruction error

Cluster the transformed data by minimising clustering cost

Different ways to minimise both LR and LC

No theoretical guarantee

Nice overview: P. Dahal. Deep clustering

Deep clustering (Foundations of Clustering) Debarghya Ghoshdastidar 30 / 60

https://deepnotes.io/deep-clustering


Density based clustering
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Statistical view of clustering

Previous perspective:

Observed data are some fixed entities

Clustering = optimisation problems

Statistical view:

Observations are manifestations of hidden laws of nature
. . . often corrupted by noise

Data = independent samples from some probabilistic model

. . . model has cluster structure (mixture model)

Clustering = (part of) model estimation
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Gaussian mixture model

Data Fitted GMM Clusters

Assume data = samples from mixture of d-variate Gaussians

Fit GMM model: Dx = w1Nd(µ1,Σ1) + w2Nd(µ2,Σ2) + . . .+ wkNd(µk,Σk)

Typically solved via Expectation Maximisation (EM)
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GMM estimation via k-means
Data = x1, . . . , xn

Define Z ∈ {0, 1}n×k : Zij = 1 if and only if xi assigned to cluster j

Iterate between

1. (for every i) Z-update : Zij = 1 if xi is closest to µj , and 0 for other j

2. (for every j) µ-update: µj =

n∑
i=1

Zijxi

n∑
i=1

Zij

Σ-update: Σj =

n∑
i=1

Zij(xi − µj)(xi − µj)
T

n∑
i=1

Zij

w-update: wj =

n∑
i=1

Zij

n
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EM as soft k-means

Expectation-maximisation (EM): [Dempster et al 1977]

Iterative solution for maximum likelihood estimation (MLE) of model parameters

GMM has soft cluster assignments

Zij = Prob
(
xi ∼ Nd(µj ,Σj)

∣∣ w, µ,Σ
)

Z-update in EM: Zij =
wj exp

(
−(xi − µj)TΣ−1j (xi − µj)

)

k∑
l=1

wj exp
(
−(xi − µl)TΣ−1l (xi − µl)

)

w, µ and Σ updates in EM: Same as previous slide
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Limitations of GMM (and k-means)

Finds only elliptical clusters

Cannot deal with outliers

Need to know number of clusters
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Nonparametric clustering

Nonparametric = No parametric assumption on data or clusters

Examples: [ ? ] GMM [ ? ] k-means [ ? ] average linkage

Nonparametric density based clustering:

Data = independent samples from a probabilistic model

No parametric assumption on model, not even k

Example: DBSCAN [Ester et al 1996]

Density-based Spatial Clustering of Applications with Noise
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Philosophy behind DBSCAN

Clusters are high density regions

. . . and points in low density region are outliers

Estimate the density locally, around a point

Exercise: Consider ball B(x, ε) centred at x and radius ε

x ∼ D =⇒ pdfD(x) ≈ #points in B(x, ε)

total #points
· 1

volume(B(x, ε))

Can threshold pdfD(x) to decide if point inside cluster or outlier

. . . or threshold based on #points in B(x, ε)
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DBSCAN [Ester et al 1996]

Hyperparameters: Radius = ε, threshold = minPts

Types of points

Core point: #points in B(x, ε) ≥ minPts

Border point: #points in B(x, ε) < minPts, but lies in ball of core point

Outlier: neither core or border point
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DBSCAN [Ester et al 1996]

1. Select any core point x that is not clustered yet

2. Assign x to a new cluster

i. Assign all points in B(x, ε) to same cluster

ii. If y ∈ B(x, ε) is core point

• Go to step-i with B(y, ε)

iii. Propagate labels (i - ii) till we cannot reach any more core point

3. Repeat steps 1-2 till there is no more unclustered core point
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Theoretical analyses

GMM is theoriticians’ favourite model [Dasgupta 1999; Vankadara & Ghoshdastidar 2020]

Used to analyse many clustering algorithms

Sample data from GMM, and prove algorithms can correctly cluster them

Less understanding of clustering mixture of nonparametric distributions

Huge literature on performance / convergence of EM algorithm

DBSCAN finds level sets of probability distributions [Sriperumbudur & Steinwart 2012]
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Semidefinite programming and similarity based clustering
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Reformulating k-means problem

Co-occurrence matrix M ∈ Rn×n for clusters C1, . . . , Ck

Mij =





1

|C`|
if both xi, xj ∈ C`

0 if xi and xj in different clusters

Define X ∈ Rn×p where rows are data points x1, . . . , xn

Rewriting k-means cost (exercise)

k∑

j=1

∑

xi∈Cj

‖xi − cj‖2 = ‖X −MX‖2F ‖A‖2F :=
∑

i,j

A2
ij
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Reformulating k-means problem

Equivalent k-means optimisation

maximise
M∈Rn×n

trace
(
XXTM

)
trace(A) =

∑

i

Aii

s.t. M is co-occurrence for some C1, . . . , Ck

Above is still combinatorial problem (computationally expensive)

Relaxation: Replace constraint by simpler condition satisfied by co-occurrence matrix

(i) M has non-negative entries (iii) trace(M) = k

(ii) M is positive semi-definite (iv) M has row sum 1
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Semidefinite programming (SDP)

Optimisation over positive semidefinite (psd) matrices

Objective and other constraints linear

Convex optimisation problem:

Many practical software, including few specific for SDP

SDP relaxation of k-means: [Peng & Wei, 2007]

maximise
M is psd

trace
(
XXTM

)

s.t. Mij ≥ 0,
∑

j Mij = 1, trace(M) = k
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Drawbacks of k-means problem

k-means produces linear cluster boundaries

Can only find convex non-overlapping clusters

k-means requires data representation x1, . . . , xn

What happens if we can only observe similarity
between two items?
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Similarity (kernel) matrix

S = n× n symmetric matrix

Sij = similarity (kernel) function between xi and xj

S could be computed from data or directly observed

Examples:

Gaussian kernel: Sij = exp

(
−‖xi − xj‖

2

σ2

)

Graph: S = adjacency matrix of a similarity graph
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Similarity based clustering

Given S ∈ Rn×n, find

k-clustering of n items or co-occurence matrix M

k-means uses a linear similarity

Sij = xTi xj or S = XXT

Similarity / kernel SDP: [Vankadara & Ghoshdastidar 2020]

maximise
M is psd

trace (SM)

s.t. Mij ≥ 0,
∑

j Mij = 1, trace(M) = k
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Example

S = similarity based on mutual 2-nearest neighbours (2-NN)

Sij =





1 if i = j
1 if xi is 2-NN of xj and xj is one of 2-NN of xi
0 otherwise

Co-occurrence matrix M Obtained clusters
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Remarks

Getting clusters from M

Use clustering (example: direct k-means on rows of M)

Unknown number of clusters [Yan et al 2018, Perrot et al 2020]

λ-SDP: maximise
M is psd

trace (SM)− λ · trace(M) λ = hyperparameter

s.t. Mij ≥ 0,
∑

j Mij = 1

Theoretical guarantees for similarity SDP

Graph / Ordinal data clustering [Yan et al 2018, Perrot et al 2020]
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How good is the clustering?
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Clustering metrics

Implicit goodness of clustering

Define measure of goodness of clusters

Tied to our belief of how good clusters should look like

Example: k-means cost, silhouette score

Comparison with ground truth

Measure difference between two clustering / co-occurrences

Example: Classification error (up to permutation of labels)
Adjusted Rand index (ARI)
Normalsed mutual information (NMI)
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Clustering stability [Ben-David et al 2006]

If data is perturbed slightly, clustering should not change a lot

Stability: Distance between clusterings of datasets sampled from same distrbution

Different runs of k-means++ give different clusterings Similarity SDP returns
stable clustering
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Finding good and stable clusters

How do we know if algorithm returns (good) stable clusters?

Theoretical analysis of algorithms:

Data has good clustering. Find this true clustering [Balcan et al 2013]

Data sampled from mixture models [Dasgupta 1999]

Measuring stability:

Verify if obtained clustering is good and stable [Meila 2018]
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Verifying ‘goodness’ via optimisation [Meila 2018]

Clustering via minimising cost (k-means)

cost(M) = cost achieved by co-occurrence M

Distance between clusterings = ‖M −M ′‖F

Measure instability of solution M :

ε(M) = max
co-occurrence M ′

{
‖M −M ′‖F : cost(M ′) ≤ cost(M)

}

How far are other clusterings which are as good as M?

For some algorithms, this can be solved via SDP
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