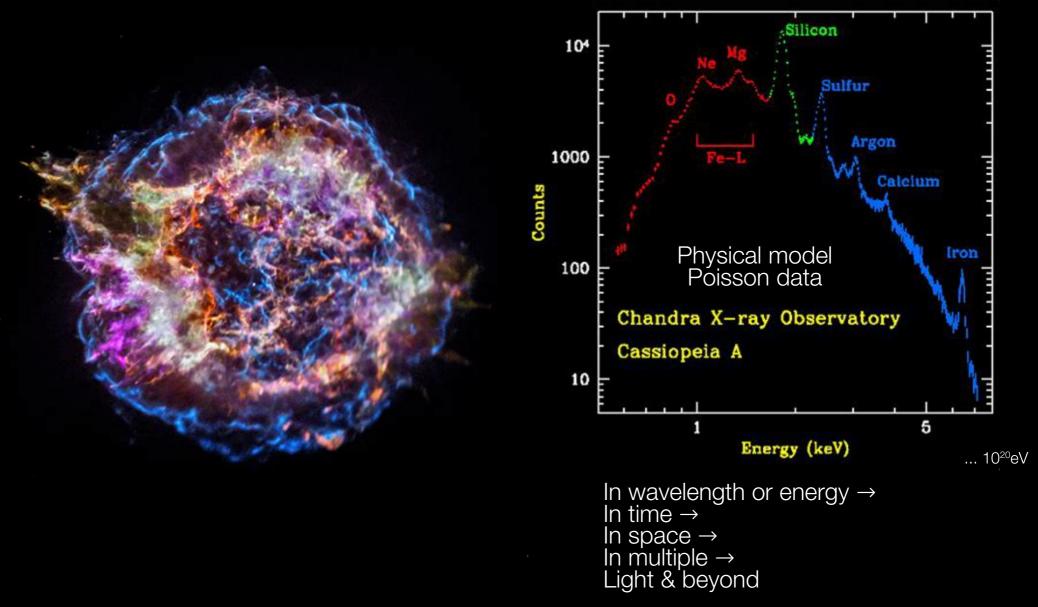
Nested Sampling

Johannes Buchner Max Planck Institute for extraterrestrial Physics http://astrost.at/istics/

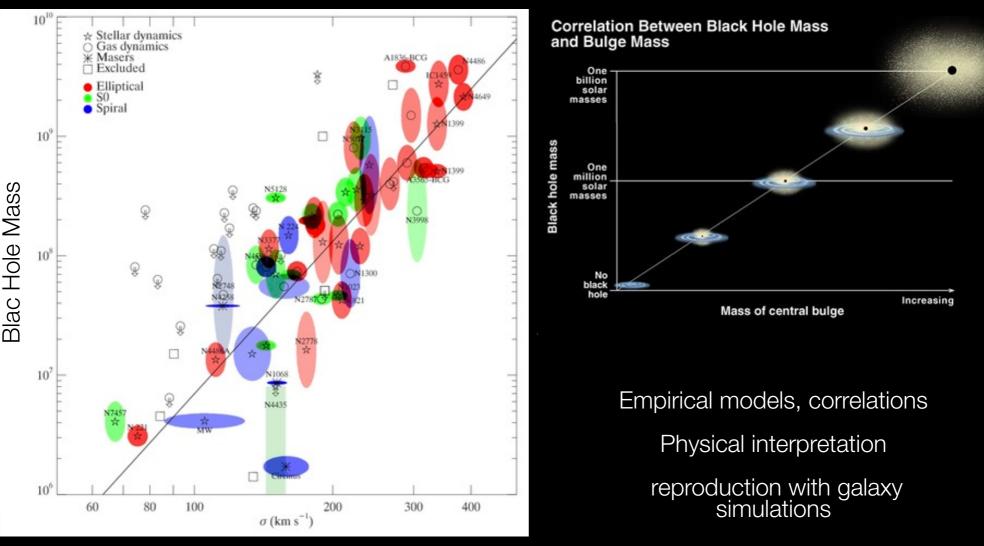
Astronomy & Astrophysics

Understanding individual objects



Astronomy & Astrophysics

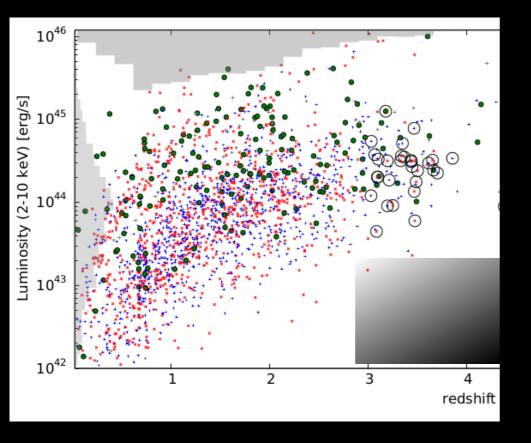
Understanding samples

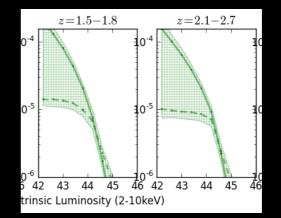


Velocity dispersion of stars

Astronomy & Astrophysics

Understanding underlying populations

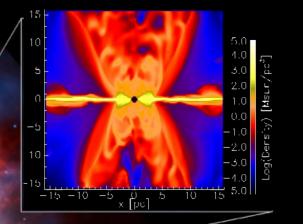




Censorship (but understood)

heavily heterogeneous uncertainties (but understood)

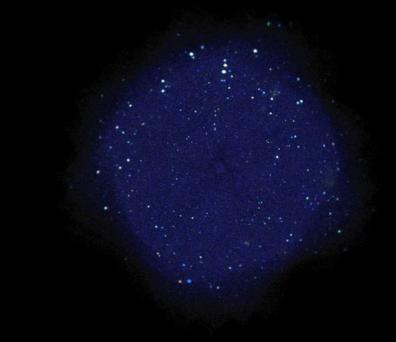
Hierarchical Bayesian Model with censorship (1983)



X-RAY, INFRARED & OPTICA

Johannes Buchner

http://astrost.at/istics/ Max Planck Institute for Extraterrestrial Physics Garching, Munich

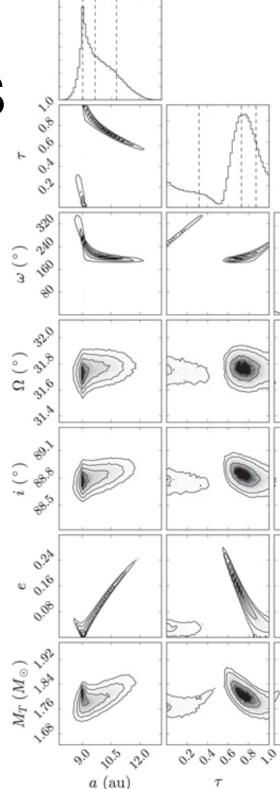


Galaxy clusters for Dark Energy 3 million Active Galactic Nuclei



Inference requirements

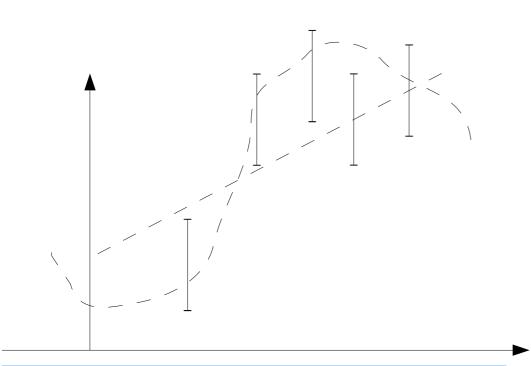
- Forward modeling with Bayesian inference is popular
- Physical models: can be complex & expensive Monte Carlo simulations
- Competing physical effects
- "degenerate" parameter constraints
- multiple solutions
- Sometimes little data, sometimes lots
- Often 2-20d (or 1e6d)



Ρ

Μ

Bayesian inference is integral



- What parameters are probable under a given model?
- What models are probable?

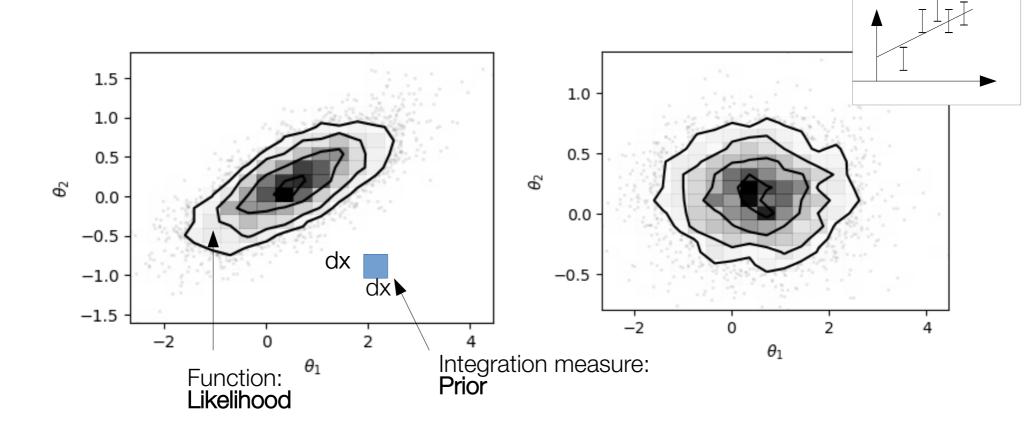
$$M_1: y_{\text{pred}} = \theta_1 + x \cdot \theta_2$$

$$L = \prod_{i} \frac{(y_i - y_{\text{pred}}(x_i))^2}{2 \cdot \sigma_i^2}$$

"physical model prediction" non-linear, complex, slow

statistical measurement process data vs. model

Bayesian inference is integral



- Parameter estimation: identify parameter space subset
- Model comparison: identify model subset

 containing 99% of probability mass

Bayesian tools

To handle multiple maxima, low state of information, peculiar posterior shapes, numerical likelihoods

(& have a life beyond convergence criteria)

Parameter estimation

Model comparison

low-d: Nested sampling Nested sampling

(~20d) high-d:

HMCMC with multiple chains

 \rightarrow posterior samples

open research problem

→ Bayes factors

Nested sampling theory

- Idea
- Convergence
- Point Process-based Monte Carlo
- Sequential Monte Carlo Superset of SMC & NS algorithms with strong theoretical foundations

Skilling 2004, 2006

Evans 2007 Chopin & Robert 2010 Skilling 2009

Walter (2014)

Salomone (2018)

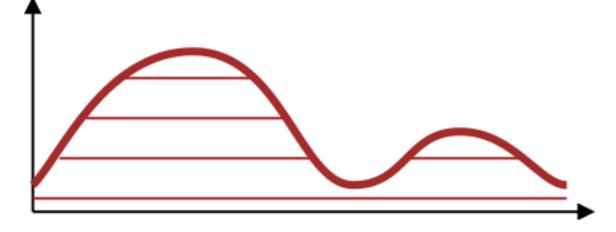
Birge (2012) Polson & Scott (2014)

Nested sampling in practice

- Inputs
 - Dimensionality of the problem
 - Prior density function
 - Likelihood function
- Outputs
 - Posterior samples (like in MCMC)
 - In(Z) with uncertainties

MultiNest, PyMultiNest, nestle, dynesty, polychord, UltraNest

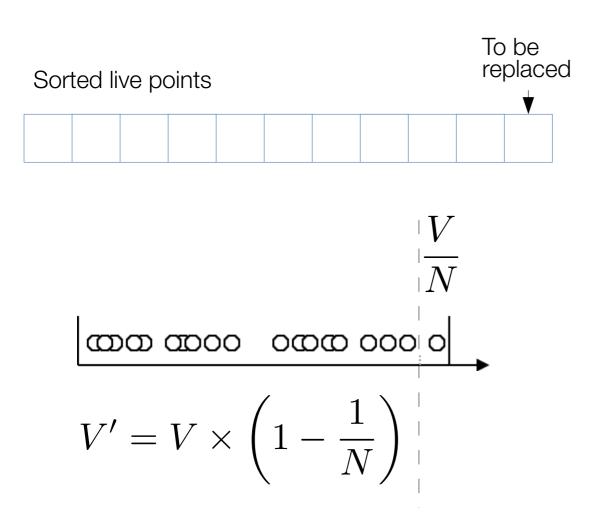
Nested sampling idea (1)



Lebegue integral: Height * dV

 $Z \approx \sum \Delta V_i \cdot L_i$

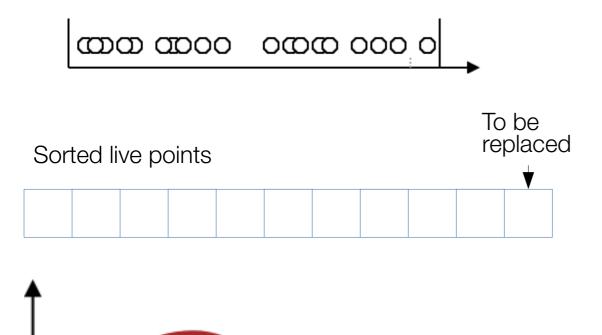
Nested sampling idea (2)



Keeping track of volume

 Exponential shrinkage (~1/N)

Nested sampling idea (3)

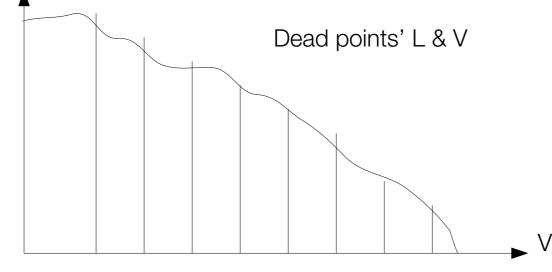


- Keeping track of volume
 - Exponential shrinkage (~1/N)
- Keeping track of height

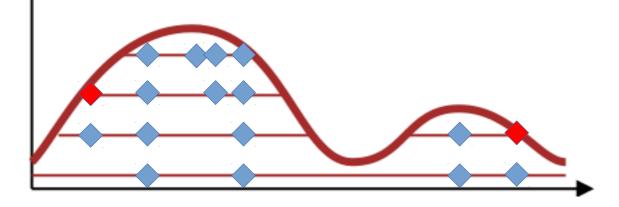
Skilling '04,06,09 Evans '07 Chopin&Robert '07,10 Walter '14

 $Z \approx \sum \Delta V_i \cdot L_i$

Nested sampling idea (4)



Integration from low to high likelihoods



 $Z \approx \sum \Delta V_i \cdot L_i$

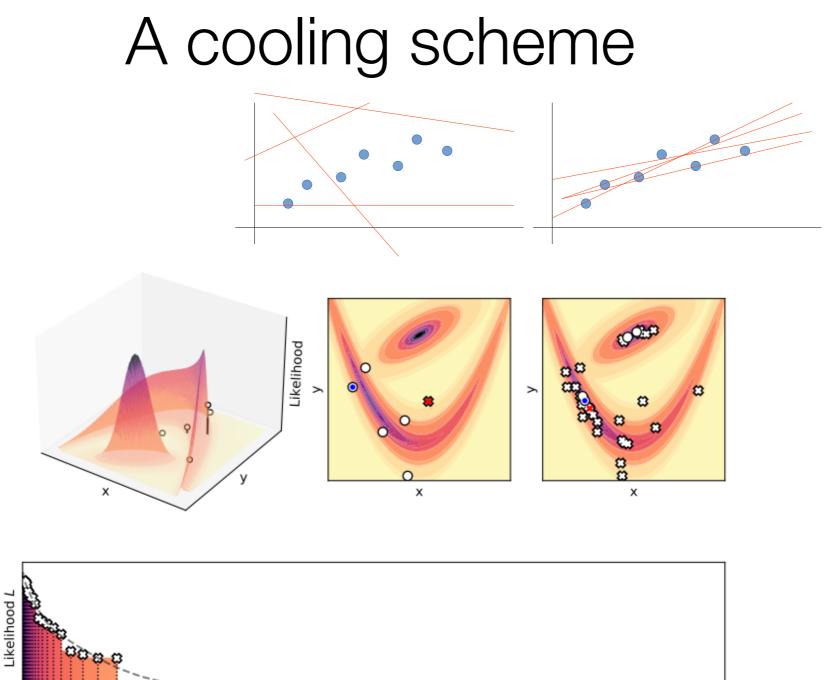
Skilling '04,06,09 Evans '07 Chopin&Robert '07,10 Walter '14

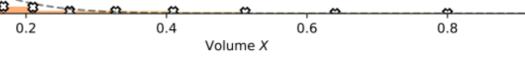
NS algorithm

- Generate initial live points from prior, evalute L
- Set V₁=1
- Loop
 - Remove lowest L point = Lmin
 - Dead point posterior weight: $w_i = V_i \times 1/N \times L_i$

•
$$V_{i+1} = V_i \times (1 - 1/N)$$

- sample new point, subject to L≥Lmin
- $Z = \Sigma_i W_i$





1.0

0.0

Nested sampling theory

- Idea
- Convergence
- Point Process-based Monte Carlo
- Sequential Monte Carlo Superset of SMC & NS algorithms with strong theoretical foundations

Skilling 2004, 2006

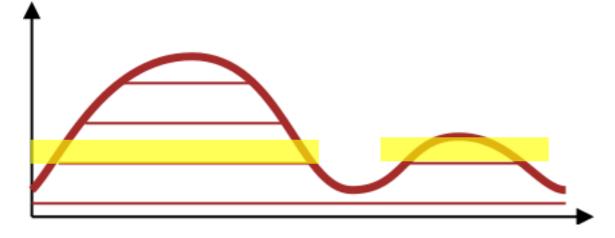
Evans 2007 Chopin & Robert 2010 Skilling 2009

Walter (2014)

Salomone+ 2018

Birge (2012) Polson & Scott (2014)

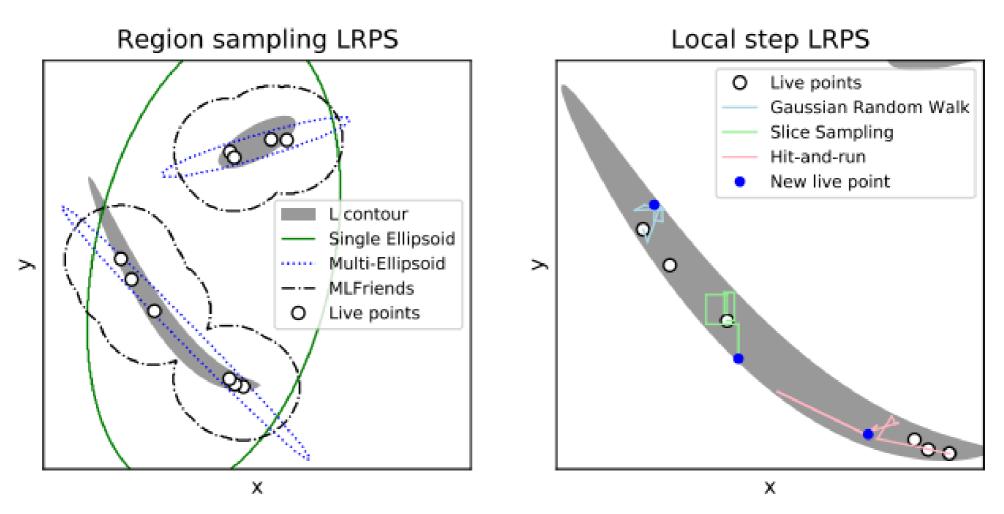
Constrained sampling



 $Z \approx \sum \Delta V_i \cdot L_i$

Skilling '04,06,09 Evans '07 Chopin&Robert '07,10 Walter '14

L-restricted prior sampling

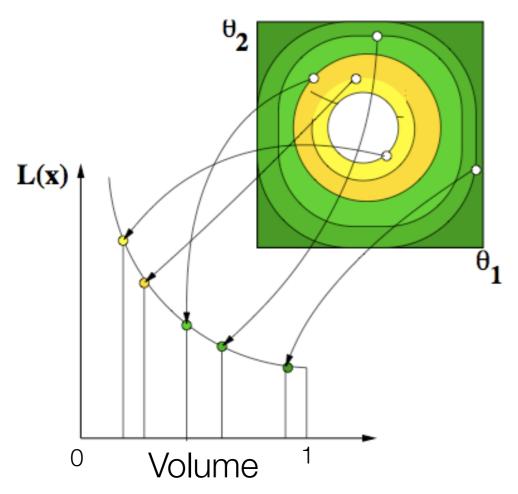


Slice sampling: Handley+2015

Billiard walks with gradients: Betancourt (2011), Skilling (2012)

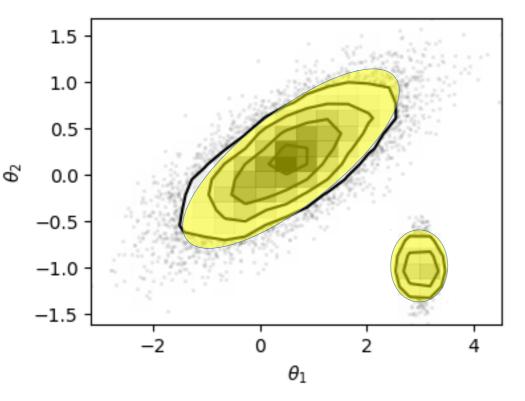
Non-volume preserving flows Moss+2019

Multi-dimensional case



- Ordering of samples
 well-defined by L
- "Indep. of dim" depends primarily on constrained sampler!
- Not limited to continuous spaces of fixed dimensions

Region sampling



- Ellipsoidal sampling Mukherjee+06
- Multi-ellipsoidal sampling

Shaw+07, Feroz&Hobson08, Feroz+09

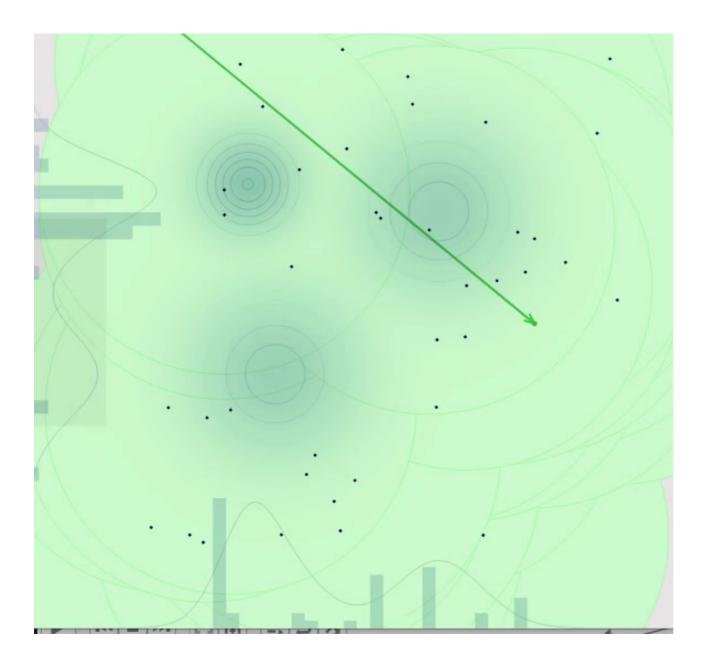
- MultiNest (pymultinest)
- Very popular!

Clustering live points: x-means (Feroz&Hobson 2008) Iterative Jarvis-Patrick (Handley+2015)

uniformly sampled, pure, slowly changing

Wilks' theorem Elliptical distributions

Animation of MLFriends NS



For efficiency:

Reconstruct a region

Sample uniformly

RadFriends: ellipsoid around each point Circle size crossvalidated to recover current points

Alternative: MCMC

https://chi-feng.github.io/ mcmc-demo/app.html

Specifying priors

Transform uniform cube to physical parameters


```
def my_prior_transform(cube):
    # cube is a d-dimensional array
    params = cube.copy()
    # from 0 to 10
    params[0] = cube[0] * 10
    return params
```

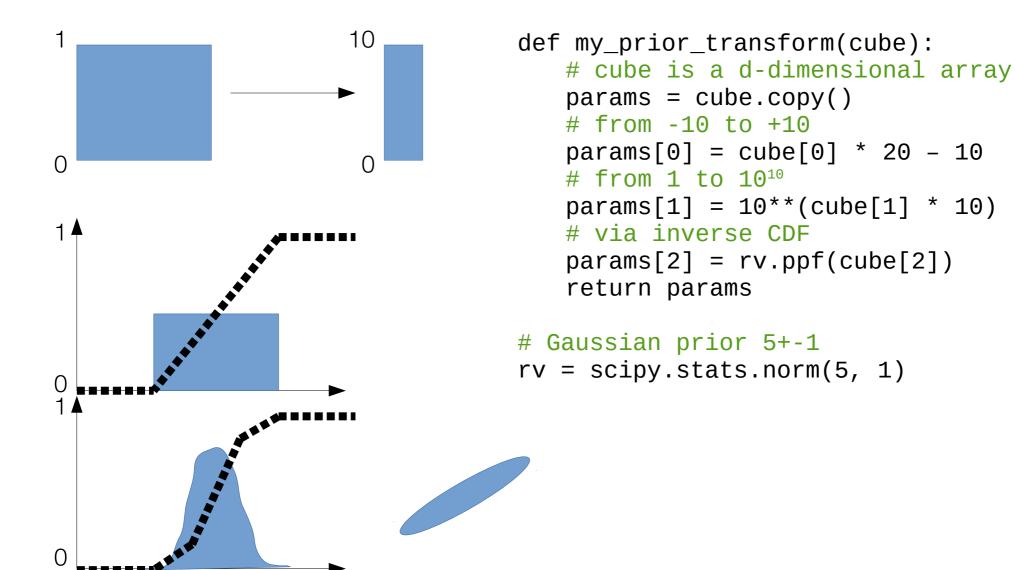
Specifying priors

Transform uniform cube to physical parameters

def my_prior_transform(cube):
 # cube is a d-dimensional array
 params = cube.copy()
 # from -10 to +10
 params[0] = cube[0] * 20 - 10
 return params

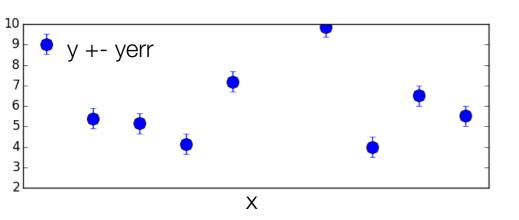
Specifying priors

Transform uniform cube to physical parameters



Specifying likelihoods

Gaussian example

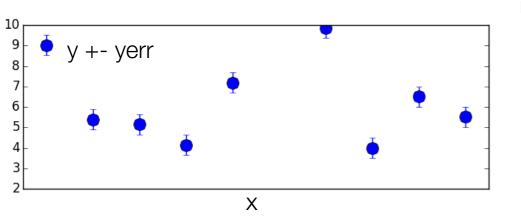


mydata = numpy.loadtxt("mydata.txt")
x, y, yerr = mydata.transpose()

```
def my_likelihood(params):
    # params is a d-dimensional array
    # already transformed
    a, b, c, d = params
    # compute model prediction:
    m = (a + numpy.sin(x * c)) * d
    # compute gaussian likelihood
    return -0.5*(((m - y)/yerr)**2).sum()
```

Specifying likelihoods

Gaussian example



Arbitrarily complex model calculation \rightarrow Arbitrarily complex data uncertainties \rightarrow

```
mydata = numpy.loadtxt("mydata.txt")
x, y, yerr = mydata.transpose()
```

```
def my_likelihood(params):
    # params is a d-dimensional array
    # already transformed
    a, b, c, d = params
    # compute model prediction:
    m = (a + numpy.sin(x * c)) * d
    # compute gaussian likelihood
    return -0.5*(((m - y)/yerr)**2).sum()
```

```
result = solve(
   LogLikelihood=my_likelihood,
   Prior=my_prior_transform,
   n_dims=4,
   outputfiles_basename='mysine_')
```

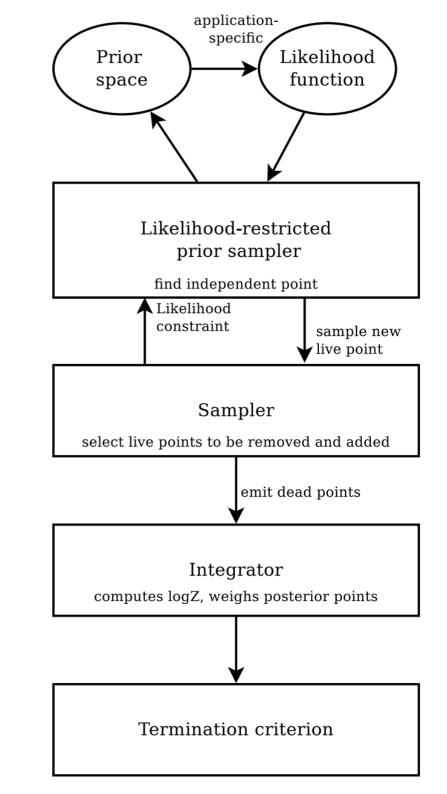
--- Tutorial session ---

https://johannesbuchner.github.io/UltraNest/example-sine-line.html

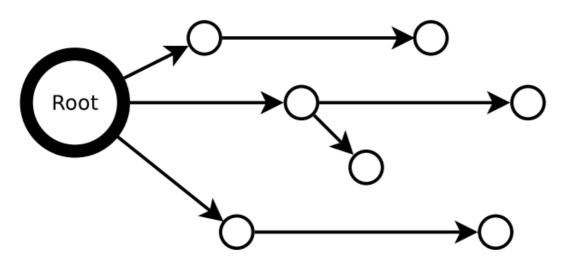
- Fit a time series with a sine
- Parameter estimation and Z computation
- Visualisations

Components

- Advanced NS topics
 - Integrators
 - Error estimates
 - Diagnostics: Tests & Visualisations
 - LRPS
 - Local steps
 - Region based
 - Hybrid
 - Termination criteria
 - Parallelisation
 - Extensions



Tree search view



Assume queue, sorted by likelihood value add all children of root node to queue

while queue is not empty: Nlive = length of queue obtain and remove next node from queue

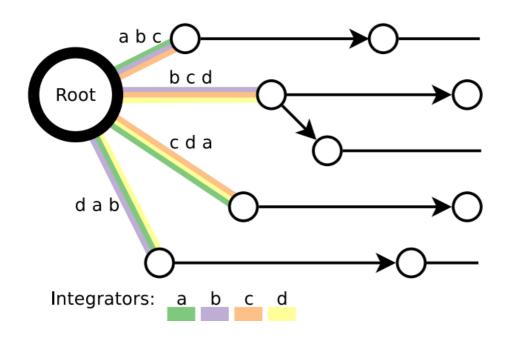
store dead node with weight L * V
shrink volume by 1 / Nlive

if not terminating: expand node

add all children of node to Q

- Root = prior
 Volume
- Outgoing edges:
 split volume
- # parallel edges = # of live points

Error estimation



Estimates L noise.

To estimate V noise, change volume shrinkage

 $dV=1/N \rightarrow beta(N, 1)$ randomly

- Multiple integrators
- Blinded to some threads

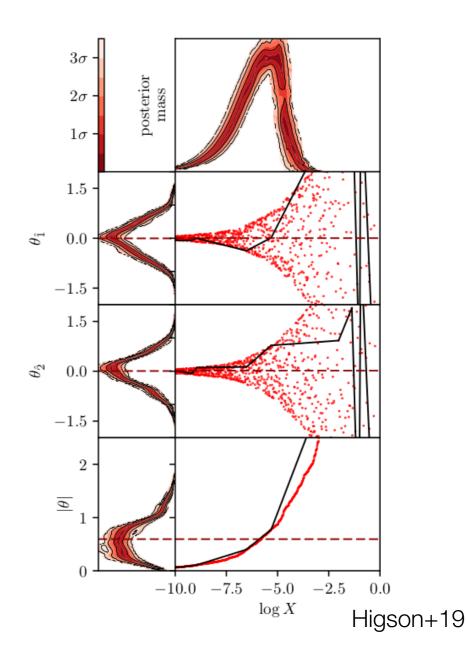
 \rightarrow

- LRPS validation
- Integration validation

Diagnostics: Visualisations

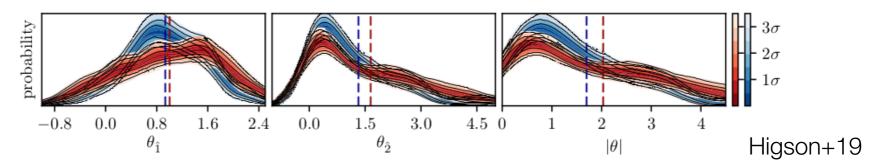
- Each leave-k-out integrator gives results
 - \rightarrow uncertainty in posterior

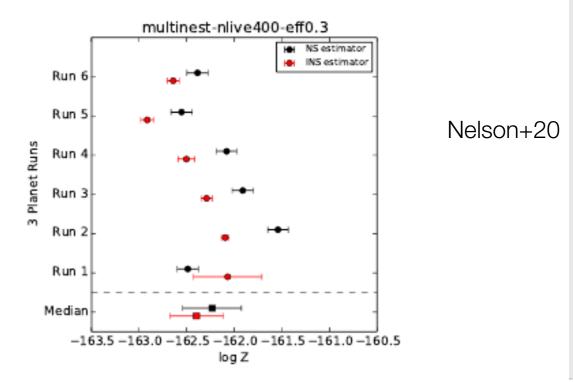
(+uncertainty in Z)



Diagnostics: Visualisations

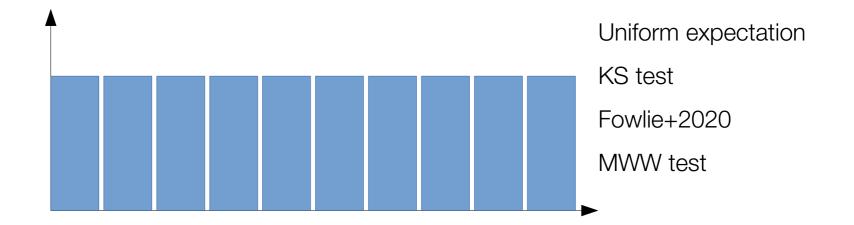
Comparison of multiple runs





Diagnostics: tests

Insertion order



Parallelisation

- Within the likelihood
- LRPS farmed out
- Removing multiple points
- Merging independent runs
- Analyzing multiple data sets simultaneously

Extensions

- Dynamic NS
- Using thrown-away points
 Importance NS
- No hard borders:
 - Diffusive NS
 - Daemonic NS
- HMC integrations
 - •
 - Daemonic NS for smooth border
 - Thermometer as diagnostics

Higson+17

Chopin & Roberts 07, 08,10

Brewer+11

Habeck15

Related algorithms

- Simulated annealing
 - Special cooling schedule
- Sequential Monte Carlo https://arxiv.org/abs/1805.03924
 Population is reused, special proposal
- Bridge, path sampling
- Importance sampling

Future

- Theory: SMC–NS
- Deeper HMC-NS blends
- More implementations in other languages
 Parallelisation

Parallelisation Low latency Resuming Easy to install High-d Reliable

Review on Nested Sampling methods in prep.