Future Detectors Strategies, Physics, Detectors & Spin-Offs

Frank Simon

@ MPP Project Review 2020

MAX-PLANCK-INSTITUT FÜR PHYSIK

The Future Detectors Group

... in 2020

The Core Group

• Post-Docs

Thibaud Humair, Miroslav Gabriel (until 08/2020), Christian Graf (since 08/2020)

- PhD Students Lorenz Emberger, Christian Graf (until 07/2020), Thomas Kraetzschmar, Hendrik Windel
- Master Students Malinda de Silva (until 01/2020), Christian Winter (until 01/2020), Ivan Popov, Justin Skorupa
- Technical Students (for parts of 2020) Fabian Hummer
- Group Leader Frank Simon

Close collaboration with:

- Belle / Belle II group
- the **Technical Departments**

With key roles in collaborations and in the community, among them:

- Chair of the LHC Experiments Committee
- Chair of CALICE Institute Board
- Member of the CLICdp Executive Team
- Member of the ILC IDT WG3 Executive Board

Outline: The Projects in the Group

Detectors & Physics

3

Outline: The Projects in the Group

Detectors & Physics

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

The Context: Future e+e- Colliders and Beyond

Accelerator-based Precision Experiments with Leptons

- The main driver of the activities: Experiments at future lepton colliders
 - ILC: 250 GeV (500 GeV 1 TeV with upgrade) under discussion in Japan
- **CERN Future**:
- FCCee: Circular collider, 90 GeV 365 GeV

• CLIC: Staged machine, 380 GeV - 3 TeV

The Context: Future e+e- Colliders and Beyond

Accelerator-based Precision Experiments with Leptons

- The main driver of the activities: Experiments at future lepton colliders
 - ILC: 250 GeV (500 GeV 1 TeV with upgrade) under discussion in Japan
- **CERN Future**:
- FCCee: Circular collider, 90 GeV 365 GeV
- CLIC: Staged machine, 380 GeV 3 TeV
- The Belle II experiment at SuperKEKB

Future Detectors - MPP Project Review, December 2020

- - under discussion in Japan

Future Detectors - MPP Project Review, December 2020

European Input ...

• Update of the European Strategy for Particle Physics, released June 2020

Key statements on future colliders:

An electron-positron Higgs factory is the highest-priority next collider.

European Input ...

 Update of the European Strategy for Particle Physics, released June 2020

Key statements on future colliders:

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage

European Input ...

 Update of the European Strategy for Particle Physics, released June 2020

Key statements on future colliders:

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage

European Input ...

• Update of the European Strategy for Particle Physics, released June 2020

Key statements on future colliders:

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage

Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders [...] The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs.

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

FS, 2016

... and Japanese Tealeaves

- The ILC status remains somewhat unclear but (once again) we are in a phase of movement (forward?):
 - Supportive statement by ICFA in February 2020; positive statements by MEXT Minister but also stressing need for international contributions; very strong support by US Dept. of State.
 - Noted a "climate change" in terms of project scope: First stage @ 250 GeV, but studies on energy upgrades also beyond 1 TeV now explicitly encouraged; also: Physics Beyond Colliders @ILC being looked at

... and Japanese Tealeaves

- The ILC status remains somewhat unclear but (once again) we are in a phase of movement (forward?):
 - Supportive statement by ICFA in February 2020; positive statements by MEXT Minister but also stressing need for international contributions; very strong support by US Dept. of State.
 - Noted a "climate change" in terms of project scope: First stage @ 250 GeV, but studies on energy upgrades also beyond 1 TeV now explicitly encouraged; also: Physics Beyond Colliders @ILC being looked at

The process towards the realisation of the ILC: IDT is formed under ICFA. KEK serves as its host.

Stage 1 International Development Team (~1.5 years)

ILC Pre-Lab. is established by MOU's among the laboratories.

Stage 2 ILC Pre-Laboratory (4 years)

ILC Lab. is established by governmental agreement.

Stage 3 ILC Laboratory (10 years for construction)

Stage 4 Experiment at ILC!

Future Detectors - MPP Project Review, December 2020

... and Japanese Tealeaves

- The ILC status remains somewhat unclear but (once again) we are in a phase of movement (forward?): • Supportive statement by ICFA in February 2020; positive statements by MEXT Minister - but also stressing
 - need for international contributions; very strong support by US Dept. of State.
 - Noted a "climate change" in terms of project scope: First stage @ 250 GeV, but studies on energy upgrades also beyond 1 TeV now explicitly encouraged; also: Physics Beyond Colliders @ILC being looked at

The process towards the realisation of the ILC: IDT is formed under ICFA. KEK serves as its host.

Stage 1 International Development Team (~1.5 years)

ILC Pre-Lab. is established by MOU's among the laboratories.

Stage 2 ILC Pre-Laboratory (4 years)

ILC Lab. is established by governmental agreement.

Stage 3 ILC Laboratory (10 years for construction)

Stage 4 Experiment at ILC!

Future Detectors - MPP Project Review, December 2020

Precision Measurements

• The current focus in the Future Detectors group: 350 GeV and up primarily the domain of linear colliders

- Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)
- Standard fit of mass only: ILC 12.2 MeV [stat] CLIC 13.3 MeV [stat] FCCee 10.0 MeV [stat]

Precision Measurements

Future Detectors - MPP Project Review, December 2020

- Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)
- Standard fit of mass only: ILC 12.2 MeV [stat] CLIC 13.3 MeV [stat] FCCee 10.0 MeV [stat]

Precision Measurements

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

Precision Measurements

• MPP activities outside the Future Detector Group: The potential for precision QCD at lower energy stages of FCCee [Andrii Verbytskyi, Stefan Kluth, Giulia Zanderighi et al.]

High precision measurement of $\alpha_s(M_Z)$ in hadronic events, with the goal of sub-permille experimental precision

- Exploiting running of coupling by measuring over a wide energy range
- Above Upsilon resonances, below VV production (WW, ZZ); limit radiative return (excludes region above Z to \sim 140 GeV): Focus on 20 GeV - 91 GeV

Precision Measurements

• MPP activities outside the Future Detector Group: The potential for precision QCD at lower energy stages of FCCee [Andrii Verbytskyi, Stefan Kluth, Giulia Zanderighi et al.]

High precision measurement of $\alpha_s(M_Z)$ in hadronic events, with the goal of sub-permille experimental precision

- Exploiting running of coupling by measuring over a wide energy range
- Above Upsilon resonances, below VV production (WW, ZZ); limit radiative return (excludes region above Z to \sim 140 GeV): Focus on 20 GeV - 91 GeV

FCCee luminosity:

 $2.3 \times 10^{36} \text{ cm}^2/\text{s per IP}$ at the Z:

2.3 pb⁻¹ / s => 150 - 200 fb⁻¹ / day

107 - 108 events / day, depending on energy point

Exploiting the 5th Dimension

simulations - Test beam data for hadronic showers not (yet) available with full time resolution. To come 2021/2022

Exploiting the 5th Dimension

Future Detectors - MPP Project Review, December 2020

Exploiting the 5th Dimension

 Analysis of electron events with full time resolution to establish single-particle single hit performance of full system:

 $1.1 \text{ ns} / \sqrt{2} = 780 \text{ ps}$

ILC Mode 1400 1403 ± 14.9 0.5449 ± 0.0089 1200 1.1 ± 0.0 1000 800 600 400 200 -30 -20 -10 0 10 20

Exploiting the 5th Dimension

• Analysis of electron events with full time resolution to establish single-particle single hit performance of full system:

1.1 ns / √2 = 780 ps

• And a project to understand the timing properties of the SiPM - scintillator tile system in detail. Test beam at DESY 10/2020

Put together a compact system with 4 scintillator tiles, digitzer and control laptop.

Future Detectors - MPP Project Review, December 2020

Exploiting the 5th Dimension

 Analysis of electron events with full time resolution to establish single-particle single hit performance of full system:

$1.1 \text{ ns} / \sqrt{2} = 780 \text{ ps}$

 And a project to understand the timing properties of the SiPM scintillator tile system in detail. Test beam at DESY 10/2020

within a few hours, 700 M events, 11 TB recorded in 1 week

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

Towards automatic Assembly

- Full collider calorimeter systems: 10s of million of scintillator tiles
- → Industrialisation & automatisation crucial.

Towards automatic Assembly

- Full collider calorimeter systems: 10s of million of scintillator tiles
- → Industrialisation & automatisation crucial.

• A misalignment results in non-uniformities of the scintillator response. Detailed study for different geometries.

Future Detectors - MPP Project Review, December 2020

x=-1.1 mm, y=-0.6 mm

Frank Simon (fsimon@mpp.mpg.de)

Towards automatic Assembly

- Full collider calorimeter systems: 10s of million of scintillator tiles
- \Rightarrow Industrialisation & automatisation crucial.

• A misalignment results in non-uniformities of the scintillator response. Detailed study for different geometries.

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

Injection Background in SuperKEKB

Understanding a new Accelerator with CALICE Technology

 The CLAWS system: Detailed studies of injection background in SuperKEKB commissioning from Phase I - Phase III with different dedicated SiPM-on-Tile systems

Injection Background in SuperKEKB

Understanding a new Accelerator with CALICE Technology

• The CLAWS system: Detailed studies of injection background in SuperKEKB commissioning from Phase I - Phase III with different dedicated SiPM-on-Tile systems

Injection Background in SuperKEKB

Understanding a new Accelerator with CALICE Technology

injection background in SuperKEKB commissioning from Phase I - Phase III with different dedicated SiPM-on-Tile systems

A Fast Beam Abort for SuperKEKB A Spin-off of CALICE Technology

• A new role for the CLAWS system: Using permanently installed 3rd generation sensors on QCS as a fast additional beam abort system - additional components on the plane to Japan at the moment

Frank Simon (fsimon@mpp.mpg.de)

A Fast Beam Abort for SuperKEKB

A Spin-off of CALICE Technology

Evolving ECAL Concept for DUNE

• A first conceptual design for the DUNE Near Detector complex has been established

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

Evolving ECAL Concept for DUNE

• A first conceptual design for the DUNE Near Detector complex has been established

Future Detectors - MPP Project Review, December 2020

Frank Simon (fsimon@mpp.mpg.de)

Evolving ECAL Concept for DUNE

• A first conceptual design for the DUNE Near Detector complex has been established

Future Detectors - MPP Project Review, December 2020

Evolving ECAL Concept for DUNE

• Key capabilities of the calorimeter

neutron reconstruction: position and time resolution for energy via time-of-flight

 π^0 reconstruction: energy, position and angular resolution

Evolving ECAL Concept for DUNE

• Key capabilities of the calorimeter

JE ND HPg IP neutron reconstruction: position and time resolution for energy via time-of-flight 1860 Z ふべ

ECAL

 π^0 reconstruction: energy, position and angular resolution

Now under study: Particle ID separation of μ/π , exploiting detector granularity + muon system, based on ML techniques

Conclusions

... and a look ahead

- The case for an e⁺e⁻ Higgs Factory has emerged strong from the European Strategy Updated • The European focus has shifted towards FCCee - but decisions are deferred until the next update ILC once again moving forward in Japan - but the outcome remains uncertain
- MPP with contributions to the physics studies for all future machines in a variety of areas.
- Highly granular scintillator-based calorimeters reaching the sub-ns timing domain and provide possibilities for current and future projects from background monitoring at SuperKEKB to DUNE and future energyfrontier colliders.

Conclusions

... and a look ahead

- The case for an e⁺e⁻ Higgs Factory has emerged strong from the European Strategy Updated • The European focus has shifted towards FCCee - but decisions are deferred until the next update • ILC once again moving forward in Japan - but the outcome remains uncertain
- MPP with contributions to the physics studies for all future machines in a variety of areas.
- Highly granular scintillator-based calorimeters reaching the sub-ns timing domain and provide possibilities for current and future projects from background monitoring at SuperKEKB to DUNE and future energyfrontier colliders.

Highly visible contributions by MPP, and a range of opportunities!

Future Detectors - MPP Project Review, December 2020

Project Timelines

My own Interpretation - With a good Dose of Optimism

The Facilities: Rings *FCCee, CEPC*

- "Low tech", large circumference accelerators as a first stage of the scientific exploitation of a circular tunnel - later followed by a high-energy hadron collider
 - Add state-of-the-art ingredients: Nano-beams, high-gradient SCRF, ...

Future Detectors - MPP Project Review, December 2020

The Facilities: Linear Colliders *ILC, CLIC*

 High gradient linear accelerators - intrinsically upgi acceleration technologies)

ILC (International Linear Collider)

~ 20 km for 250 GeV ~ 30 km for 500 GeV

superconducting RF baseline 250 GeV, full TDR energy 500 GeV, potential to 1+ TeV

Future Detectors - MPP Project Review, December 2020

• High gradient linear accelerators - intrinsically upgradeable in energy (increase in length, higher-gradient

The Facilities: Linear Colliders *ILC, CLIC*

 High gradient linear accelerators - intrinsically upgi acceleration technologies)

ILC (International Linear Collider)

~ 20 km for 250 GeV ~ 30 km for 500 GeV

superconducting RF baseline 250 GeV, full TDR energy 500 GeV, potential to 1+ TeV

Future Detectors - MPP Project Review, December 2020

• High gradient linear accelerators - intrinsically upgradeable in energy (increase in length, higher-gradient

CLIC (Compact Linear Collider)

three stages from 380 GeV (11 km) to 3 TeV (50 km)

e+e- Colliders: Luminosities

In Relation to the Higgs Physics Program

Future Detectors - MPP Project Review, December 2020

 NB: Circular colliders can have more than one IP (default: 2), while for linear colliders several detectors do not result in an increase in statistics

Cross-over of luminosity curves in the focus region of Higgs physics

 Choice of collider energy reflects luminosity evolution with energy: For circular colliders, 240 GeV provides highest ZH statistics, for linear colliders 250 GeV is better

