Hunt for Axion dark matter MPP Project review 2020

14 Dec 2020, Chang Lee on behalf of the Madmax group @ MPP

Axion dark matter

- Explicit symmetry breaking by QCD produces particle that weakly interacts with SM particles
- Axion solves the strong CP problem
- Post-inflationary scenario: m_a ~100µeV
 - Hard to reach by the existing resonant cavity searches.
- λde Broglie~1m, "wave-like"

MADMAX **Dielectric haloscope**

- Axions convert to photons at boundary of different materials in magnetic field.
- More & wider boundaries \rightarrow stronger signal
- Constructively interfering signal:
 - tuning by changing the disk spacings
- 1D structure can be easily scaled up.
- Full MADMAX: sensitivity to QCD axions

MPP Project Review, 14 Dec 2020

80 x 1m² disks

MADMAX collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MADMAX group @ MPP

- Tasks: rf understanding, proof-ofprinciple setups, prototype design and magnet design.
- S. Knirck to join the ADMX group @ Fermilab

Director	A. Caldwell	Exp
Project leader	B. Majorovits	Spokesper
	O. Reimann	Exp
Scientists	G. Raffelt	Theory
	F. Steffen	Theory
Postdocs	C. Lee	Exp
	X. Li	Exp
Ph. D. students	S. Knirck*	Exp
	L.Shtembari	Exp
	J. Diehl	Theory
Engineering	D. Strom	
	A. Hambardzumjan	
	C. Gooch	
	D. Kittlinger	
	A. Sedlak	

and special thanks to the workshop!!

DESY Physics Review Committee review November review

Key comments and recommendations for MADMAX MADMAX with a strong physics programme even with the prototype magnet. support to keep post-docs and graduate students interested now. prototype magnet for a reasonable physics program in the interim.

MPP Project Review, 14 Dec 2020

Chang LEE

- We strongly encourage the collaboration and DESY to come up with a viable plan to keep
- MADMAX will dominate the axion dark matter field for more than a decade, but it needs
- The prototype MADMAX setup coupled with the prototype magnet can make all the difference, and DESY should provide a strong support to keep the momentum and the interest of the community. There is a need for a small investment for the long term, which it's critical to its final success. The investment should be geared towards materializing the

- R&D platform
 - 20 x 30cm φ sapphire disks
 - 4K operation
- Cryostat design fixed
- First cryogenic piezo positioner & laser interferometer assembly delivered
 - to be tested in the MPP LHe cryostat

Morpurgo magnet @ CERN

- 1.6 T dipole field
 - Test of the booster in B-field
- Usage during the SPSS shut down
 - CERN SPSC approved the usage
 - LHe provided by CERN
- ALP search after successful commissioning

Quantum-limited amplifier Traveling wave parametric amplifier (TWPA)

- Amplifier is a major source of thermal noise.
- First 10 GHz TWPA produced and characterized: Phys. Rev. X 10, 021021
- Noise temperature ~ 1K!
 - Remaining source is the substrate.
- Future development to 30 GHz.

MPP Project Review, 14 Dec 2020

Chang LEE

Meanwhile in Lab 39

Proof-of-principle setup 3x 100mm disks in LHe

- Simple and robust dielectric haloscope
 - Easy comparison with simulation
 - easier calibration & understanding

y z x

- Thermal noise measurement in LHe
 - comparison with reflectivity
- ALP / hidden photon search

MPP Project Review, 14 Dec 2020

"leakage" to the external

Proof-of-principle setup ALP / hidden photon search

LHe cryostat & dipole magnet procured & operational.

0.45 T dipole Halbach array

MPP Project Review, 14 Dec 2020

Chang LEE

Conclusion

\bullet <u>AX</u>

MPP Project Review, 14 Dec 2020

• 2021 will be another exciting year!

Ϋ́.

Stay tuned!