MPP project review ATLAS physics

<u>D. Britzger</u> for the MPP ATLAS group Max-Planck-Institut für Physik München, Germany

Munich, 14.12.2020

MAX-PLANCK-II

FÜR PHYSIK

ATLAS

Run-2 data analyses with proton-proton collisions

- Very successful data taking at $\sqrt{s} = 13$ TeV until end 2018
- Data taking efficiency 95.7%
- Integrated luminosity of about 140fb⁻¹ was collected

MPP group members play a leading role in many important physics measurements and searches

- Top quark physics
- Higgs physics
- Searches for BSM physics

70 papers submitted to journals in 2020 so far

- This talk focusses on results with ...
 - ... major contributions from MPP members
 - ... where MPP members are analysis (co-)coordinators

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Top-quark physics and the top-quark mass

The top-quark is of great importance for all sectors of the Standard Model

- The top-quark is the fermion with the highest mass, $m_t \sim 173$ GeV
- Therefore it represents a very unique research subject its mass is an outstanding and important parameter in all sectors of the Standard Model

- The top-quark connects the strong, the electroweak and the Higgs sector
- Its precise knowledge is of crucial importance for indirect searches for BSM effects, e.g. through loop-induced insertions to SM predictions

Top-quark mass precision measurements

Reminder: top-quark mass measurements and the ATLAS combination

- Most precise single measurement: di-lepton channel
- ATLAS combination
 - → m_{top}=172.69 ± 0.25 (stat) ± 0.41 (syst) GeV

Top-quark measurements nowadays 'systematically' limited

- \rightarrow Important uncertainties associated to
- tt event modelling with MC event generators:
 tW-interference terms, color reconnection, parton shower, hadronization, background models, PDFs, ...
- Jet energy scale, jet resolution, b-tagging, etc...

Ongoing work for improved top-quark mass determinations

- Combination of the results from ATLAS and CMS within the LHCTopWG
- Work on $m_{\mbox{\tiny top}}$ in the dilepton and lepton+jets decay channels with Run-2 data

Using deep neural networks: improve the efficiency for selecting the correct permutation of the decay products

→ Improvements of the top-quark mass measurement, and reductions of the systematic uncertainties

Measurements of: *pp* → *WWbb*

WWbb represents the final state of top-quark pair events, but also includes...

- Details on WWbb modelling are very relevant for <u>tt & top-quark mass analyses</u>, <u>SUSY</u> searches, etc... (Interference effects with single-top diagrams, narrow-width approximation, higher order correction in the top-quark decay, definition of the top-quark mass, NLO+PS matching, etc...)
- WWbb is an important process on its own
 - fixed order predictions, etc...
 - sensitivity to m_t , top-quark width Γ_t , α_s , PDFs, ...

New measurements are performed

- <u>di-lepton channel</u>: $pp \rightarrow bbll + MET$
 - → Understand *tt-Wtb* interference
- <u>I+jets channel</u>: $pp \rightarrow WWbb$
 - → Measure W-boson kinematics
 - → Determine SM parameters

top-quark pair in association with a Z boson

• *ttZ* is a comparatively rare and very interesting Standard Model process

- measurements of *ttZ* offer stringent tests of the Standard Model
 - \rightarrow LO involves QCD & EW coupling
 - → prominent background for searches (*tttt,tZq*, SUSY models, etc...)
- Combination of <u>3 lepton</u> and <u>4 lepton</u> final states
- Full run-2 dataset with 139 fb⁻¹


```
\sigma_{t\bar{t}Z} = 1.05 \pm 0.05 \text{ (stat.)} \pm 0.09 \text{ (syst.) pb}
```


MPP annual review – ATLAS physics

top-quark pair in association with a Z boson

ttZ – differential measurement performed as a function of 10 variables

- ...in <u>3 lepton</u> and <u>4 lepton</u> channels ... with full Run-2 data
- Data unfolded to parton level
- First differential *ttZ* measurement with full Run-2 data
- First measurements for variables probing the tt-system

Good agreement with Standard Model predictions

 $N_{\rm jets}$

 $N_{\rm jets}$

 $p_{\rm T}^Z$

3£

 4ℓ

 $3\ell + 4\ell$

 $p_{\mathrm{T}}^{\ell,\mathrm{non-Z}}$

 $p_{\rm T}^{t\bar{t}}$

 $|y^{Z}|$

 $\Delta \phi(Z, t_{\rm lep})$

 $\Delta \phi(Z, t\bar{t})$

 $|\Delta y(Z, t_{\text{lep}})|$

 $\Delta \phi(\ell_t^+, \ell_{\bar{t}}^-)$

All-hadronic ttbb – Differential Cross Sections

ttbb differential cross sections

- Study heavy quark production
- Understand *ttbb* modelling
- Look for new physics, (e.g. charged Higgs (gg → tbH+(tb)))
- Very challenging to measure in the all-hadronic final state (8 jets)

ttbb cross sections are important for

- Present uncertainties on *ttbb* modelling: ~ 30%
- Sizeable background for many other measurements (e.g. all-hadronic *ttH*(→*bb*), *tttt*, SUSY searches, etc...)
- Learn how to reconstruct all-hadronic *ttbb* events will help later: (e.g. for all-hadronic *tttt*, or *ttH*, ...)
- analysis with Run-2 data ongoing...

ttbb prediction: $\sigma \sim 12.1$ pb, expect $\sim 1.5 \times 10^5$ events, new analysis techniques in development

Higgs physics

Higgs physics

The Higgs boson is a unique particle within the Standard Model

 $\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{f} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$

- A separate sector of the SM
- A unique particle which couples through mass terms
- The only SM one without spin
- The last particle discovered
 - ... and experimentally challenging to study

The Higgs sector is a yet largely unexplored field

- The realization of the Higgs mechanism needs to be studied experimentally
- Numerous connections to possible physics beyond the Standard Model (extended Higgs sectors, portal to Dark Matter, Supersymmetry...)
- \rightarrow The Higgs sector is a key physics research area for the decades to come.

Higgs production & decay

Higgs boson production

• Four key production modes

Higgs boson decay

• Five key decay channels

Decay Mode	Produced	Selected event	S
$H ightarrow \gamma \gamma$	18 200	6 44	0
$H \rightarrow ZZ^*$	210 000	$(\rightarrow 4\ell)$ 21	0
$H \to WW^*$	1 680 000	$(\rightarrow 2\ell 2\nu)$ 5 88	0
$H \to \tau \tau$	490 000	2 38	0
$H \rightarrow bb$	4 480 000	9 24	0

- MPP contributes to $H \rightarrow ZZ$ and $H \rightarrow WW$
- About 8 Million Higgs bosons produced at ATLAS in Run-2
- About 25000 events selected for analysis after trigger acceptance and selection cuts

Higgs-boson production cross section

$Higgs \rightarrow ZZ^{*} \rightarrow 4l$

- Small branching fraction, but low backgrounds
- Combination of various ZZ* decay channels
- $\sigma_i^{H \to ZZ^*} = \sigma_i \times \mathcal{A}_i \times \mathcal{BR} = 1.34 \pm 0.12 \text{pb}$

Total Higgs production cross section

 $\sigma_{\rm tot} = 53.5 \pm 4.9 ({\rm stat.}) \pm 2.1 ({\rm sys.}) \, {\rm pb}$

• Inclusive fiducial cross section $H \rightarrow ZZ^* \rightarrow 4I$

Higgs production

$H \rightarrow WW^* \rightarrow II_{VV}$

- VBF observed for the first time in a single decay channel
- Strong sensitivity enhancement via machine learning

ATLAS Higgs cross section combination

ATLAS-CONF-2020-027

Global signal strength: μ = 1.06 ± 0.07

Differential and 'exclusive' Higgs cross sections

Differential Higgs cross sections

- Study Higgs boson dynamics
- \rightarrow Sensitive to new physics

Exclusive production cross sections

- Measurement of Higgs + additional activity
 - → Sensitivity to Higgs-boson production mode

Higgs in a SM effective theory ($H \rightarrow ZZ^*$)

SM could be just an effective theory (EFT) valid only below an energy scale Λ

• Deviations from the SM are parameterized by higher-dimension operators

 $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i^{(5)} O_i^{(5)}}{\Lambda} + \sum_{i} \frac{c_i^{(6)} O_i^{(6)}}{\Lambda^2} + \dots$

- Wilson coefficients $c_i^{(d)}$ can be constrained by the Higgs data.
- EFT interpretation of $H \rightarrow ZZ^* \rightarrow 4I$ measurement

MPP annual review – ATLAS physics

MPP annual review – ATLAS physics

Higgs in a SM effective theory ($H \rightarrow WW^*$)

Standard Model could be an effective theory (EFT)

• Introduce an effective langrangian

Direct search for CP-violation

• Effective gg→H vertex

- Study azimuthal angle Δφ_{jj} between the two jets in gluon fusion for pp→H(WW*)+2jets
- Constrain CP-violating terms: ideally avoid sensitivity to CP-even terms
- Similar studies ongoing in VBF using $pp \rightarrow ZZ^* \rightarrow 4I$

Consistency with Standard Model expectations

Direct searches for new particles

Search for di-boson resonances

Many SM extensions propose new heavy bosons (heavy Higgs, heavy vector bosons, gravitons, ...)

- Generic search for 'bumps' in invariant di-boson mass spectra: $X \rightarrow Zh \rightarrow (IIbb, bbvv)$
- Resolved topology $(h \rightarrow bb)$

• Merged: probe higher mass

Search for di-boson resonances

Search for an extended Higgs sector – Two Higgs doublet fields (2HDM)

• 2HDM \rightarrow predicts 5 physical Higgs bosons (h, H, A, H⁺, H⁻)

- First result with full Run-II data
- Up to 3 times better constraints compared to previous results
- Ongoing:
 - → Analysis optimization using machine learning techniques
 - \rightarrow First search for di-boson resonances produced via vector boson fusion

Dark matter searches

Higgs sector and Dark matter (DM) sector are closely related

- Mass of Dark matter particles likely comes from some kind of Higgs mechanism
- \rightarrow Probe direct interaction of DM and Higgs sector
- Observable signal if DM is produced in association with visible SM particles: mono-X signature

Is there a Higgs mechanism in the Dark sector ? Could there be a dark Higgs boson ? Is there a Dark Higgs boson mixing with SM?

 Previous MPP searches: Mono-H(bb) (Phys.Lett.B 765 (2016) 11, PRL 119 (2017) 181804, ATLAS-CONF-2018-039) Higgs → invisible (JHEP 10 (2018) 180, PRL. 122 (2019) 231801)
 associated SM particles (jets, photons, bosons,...)

 missing transverse momentum from DM particles

Higgs boson is one of the most obvious portals to DM

Dark matter searches

Weakly interacting DM particles

• Mono-X signature in weakly interacting DM model

compare: M. Durr et al., JHEP 04 (2017) 143

• $s \rightarrow bb$

Reinterpretation of our Mono-h(bb) search in terms of $s \rightarrow bb$ Dark Higgs Boson decays (ATLAS-CONF-2018-039)

Mono-s(→bb)

• Reinterpret our previous Mono-H(bb) search (ATLAS-CONF-2018-039)

 \rightarrow RECAST analysis preservation framework

Mediator masses up to 3.2 TeV are excluded

Dark matter searches – missing $E_{T} + VV$

MET+VV hadronic channel

- Challenging signature
 - $s \rightarrow WW \rightarrow qqqq$
- Novel track assisted reclustered jets (ATL-PHYS-PUB-2018-012)

Limits on dark Higgs boson

- First explicit search for dark Higgs decaying to WW/ZZ + MET
- mass reach beyond $m_s \sim 2m_w = 160 \text{GeV}$

Setting limits on Dark Higgs Bosons for the first time at the LHC.

Supersymmetry

Supersymmetry (SUSY)

- An elegant and complete theory *beyond SM*
- Each SM particle gets a superpartner differing by spin ¹/₂
- New discrete quantum number R (1 for SM, -1 for SUSY particles)

Attractive implications

- Lightest SUSY particle (neutralino) reasonable DM candidate
- SUSY addresses why Higgs mass is smaller than Planck scale
- Naturalness arguments suggest that parts of SUSY particle spectrum would be accessible

Searches are performed in various final state and interpreted in terms of specific SUSY scenarios

Supersymmetry – multi-lepton final states

Multi-lepton final states

- Clean experimental signature
- Sensitive to both R-parity conserving (RPC) and violating (RPV) scenarios

Search with four or more charged leptons (e,μ,τ)

- Including leptonic and hadronic τ 's
- Interpretation in terms of simplified RPV and

RPC (inspired by General Gauge Mediatiation) models

• Observed exclusion limits (95%C.L.)

Supersymmetry – direct stau production

Direct production of light stau leptons

• Light stau-leptons may play a role in neutralino annihilation

- Would imply a DM relic density consistent with cosmological observations
- Current result considers $\tau_{had} \tau_{had}$ channel

Ongoing: refine searches in $\tau\tau$ final states

- Combine $\tau_{lep} \tau_{had}$ and $\tau_{had} \tau_{had}$ channels
- Use machine learning techniques

Exclusion sensitivity reached for the first time after analysing the full set of Run-2 data.

Compressed SUSY

Compressed SUSY mass spectra

- If neutralinos and charginos have nearly degenerate mass
- Compressed SUSY is challenging to constrain due to soft decay products

(Summary of) ATLAS exclusion limits for higgsino pair production at 95% C.L.

p

 \mathcal{D}

Software-preparations for Run-3 and beyond

1/N_{evt} dN/d|ŋ|

Pred/Data

HepMC3 event record library

- Is a modern library to handle Monte Carlo event-records
- Version 3.2 was described in Comp.Phys.Comm. (2020)
- Implementation in ATLAS software (Athena) is ongoing

TheP8I library

- Is an interface of the Pythia8 String fragmentation model to ThePEG2/Herwig7
- Already in Athena&LCG

 \rightarrow New option to get hadronisation modeling uncertainties in Run-3

Pseudorapidity of K_{s^0} in $t\bar{t}$ events outside of jets

In ATLAS data (left) In Herwig7 predictions (right) with native hadronisation(red) and TheP8I(blue).

Summary

MPP group members are leading important ATLAS physics analyses

Top quark sector

- Precision analyses with full Run-2 data are ongoing
- Several complementary analyses to reduce backgrounds in other processes

Higgs sector

- Increased precision of cross section and coupling measurements
- Differential measurements
 - → comprehensive EFT interpretations of Higgs-data

Searches for BSM physics (new resonances, dark matter, SUSY)

- Significant analysis improvements due to full Run-2 data set
- Novel analysis techniques extending the search range and new final states are explored

Plenty of work ahead of us...

- Systematics-sensitive analyses are still ongoing
- Preparation of Run-3 analyses is fully under way.