COSINUS

a direct dark matter search using cryogenic Nal detectors

COSINUS

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Karoline Schäffner

Project review

via remote connection

December, 14 2020

@Maurizio Verdecchia Photography

MAX-PLANCK-GESELLSCHAFT

FIRST PROJECT REVIEW for COSINUS

COSINUS started as Max Planck Research Group @ MPP in 04/2019

 \rightarrow 05/2019 stop for maternity leave

Now again full time \rightarrow Thanks MPP for helping with Kita

... and COSINUS has very exciting times ahead !

14.12.2020

delivery from US to LNGS via ship storage of powder in CUORE N2-flushed cabin

→ WHY?

Dark Matter

add extra and new ingredient

→Physics beyond the Standard Model

 \rightarrow explains huge interest in community

.9%

DIRECT DARK MATTER DETECTION

Assumption

Particle-like dark matter which interacts with Standard Model particles

Most common

Dark matter particle scatters off the nucleus and induces a nuclear recoil

Also: Electron recoils ? !

There is one exception

NO SIGNAL

DAMA/LIBRA experiment

C BACKGROUND

MODULATION

DAMA/LIBRA: TIME DISTRIBUTION

Statistical significance: >11.9 σ

combined with DAMA/Nal: 2.46 tonne years and 12.90 !!!!

positive evidence for the presence of DM particles in the galactic halo

K. Schäffner

DAMA/LIBRA: ENERGY DISTRIBUTION

THE SMOKING GUN EVIDENCE?

Statistics: 12.9 σ

Period: 0.999 ± 0.001 years * 🗸

Phase: 25th May +/- 5 days (cosine peaking June 2nd)

Convincing non-DM explanation X

*in (2-6) keVee interval

COMPARISON OF EXPERIMENTS

Null results shown as: 90% C.L upper limits on the spin-independent elastic DM-nucleon cross section

DAMA/LIBRA: 3σ allowed parameter space

WHAT ARE THE UNKNOWNS?

Astro physics dark matter halo velocity distribution

Particle physics

interaction mechanism

We have a dependence on the target material

→ cross-check DAMA/LIBRA signal with **same-target experiment**

www.cosinus.it

Why do we need COSINUS?

• First Nal detector with particle discrimination

 lower energy threshold for nuclear recoils using cryogenic detectors → model independent test of DAMA

COSINUS a

of CRESST technology

"Nalce" detectors:

Dama∖LIBRA same-target experiment → use Nal crystals "Cool" detection technique:

Cryogenic scintillating calorimeters

→ make use of CRESST - technology

LOW-TEMPERATURE COSINUS DETECTOR

Phonon signal (~ 90 %)

- (almost) independent of particle type
- Nal crystal interface thermometer
- precise measurement of the deposited energy

heatbath≈10 mK

LOW-TEMPERATURE COSINUS DETECTOR

Phonon signal (~ 90 %)

- (almost) independent of particle type
- precise measurement of the deposited energy

Scintillation light (few %)

- amount of emitted light depends on particle type
 → LIGHT QUENCHING
- Add cryogenic light detector for scintillation light detection
- discrimination of interacting particle via the ratio of light to phonon signal → LIGHT YIELD

TRANSITION EDGE SENSOR (TES)

SIMULATED DATA FOR 100 kg days (gross-exposure)

 $LIGHT YIELD = \frac{LIGHT SIGNAL}{HEAT SIGNAL}$

recoils off Na → light quenching factor ~ 0.3

recoils off I → light quenching factor ~ 0.1

values for quenching factors from: Tretyak, Astropart. Phys. 33, 40 (2010)

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

SIMULATED DATA FOR 100 kg days (gross-exposure)

DOI 10.1140/epjc/s10052-016-4278-3

the modulation signal in DAMA/LIBRA is observed in the interval (1-6) keVee

PHYSICS REACH

On the way to Corno Grande (2912 m) 30.09.2018

PHYSICS POTENTIAL SUMMARY

COSINUS has the unique potential to clarify a nuclear recoil origin of the DAMA/LIBRA signal

CONFIRM

+ not too exotic dark matter

Good chance for exposure O (100 kg days)

10 detector modules about 50 g each

1 year of data taking 50% overall efficiency

Low-background cryogenic facility underground lab, shields, dilution refrigerator

RULE-OUT

O (100 kg days): strong statement

O (1000 kg days): fully model-independent

JCAP 1805 (2018) no.05, 074

Proof of Principle of final detector design

- interface: epoxy resin
- beaker-shaped Si light absorber
- Nal crystal: 66 g

2nd PROTOTYPE DETECTOR

- Nal energy threshold is (8.26 ± 0.02 (stat.))keV
- width of the ²⁴¹Am peak is (4.508 ± 0.064 (stat.)) keV
- carrier events identified by pulse shape
- 13% of emitted scintillation light detected in Si beaker

Schäffner, K. et al. J Low Temp Phys (2018). https://doi.org/10.1007/s10909-018-1967-3

TO DO LIST FOR DARK MATTER MODULE

I operate Nal as cryogenic detector
I beaker-shaped light detector
I radiopure Nal crystals
I Extended pulse shape model for Nal detector

 \Box phonon threshold of 1keV: 10keV \rightarrow 8.5 keV \rightarrow 6.5keV \rightarrow ... goal:1keV

 \rightarrow TES optimization using information from the EPSM

Prototype measurement results: G. Angloher et al. JINST 12 P11007 (2017) F. Reindl et al., J. Phys. Conf. Ser. 1342 012099 (2020) Schäffner, K. et al. J Low Temp Phys (2018)

OPTIMISATION OF THE THERMAL SENSOR @ MPP

COSINUS at MPP

COSINUS at MPP

Detector physics:

- TES production
- detector optimization
- detector testing

Data Analysis + software:

- pulse reconstruction with EPM
- development of raw data analysis software

The HOW TO build an experiment?

LABORATORI NAZIONALI DEL GRAN SASSO

COSINUS: experimental site and facility

Hall B of the LNGS

located between the XENON-1T and LUNA-MV experiments

LOOKING BACK IN 10/2018

to be opened crane DAG To Actyl / PE 2 clean room 1.1.1.1.1.1.1 Fasaday HIca.ce. work N2 Jushing space control room Ð pump1 service FOOM Hz0 & putfication VLNGS 0-0 Water NIM

First Design Ideas...

Geant4 MC simulation:

- Shielding concept
- ~80% Just started
- Optical simulation for Cerenkov veto

COSINUS: experimental facility 12/2020

COSINUS: experimental facility 12/2020

37

COSINUS: experimental facility 12/2020

COSINUS: experimental facility

COSINUS: experimental facility

COSINUS: experimental facility

COSINUS at MPP

Detector physics:

- TES production
- detector optimization
- detector testing

Data Analysis + software:

pulse reconstruction with EPM
development of raw data analysis software

Experimental setup:

- project management and complete setup planning
- dilution refrigerator and implementation at LNGS
- lifting system and rotary value structure for the cryostat
- inner copper shielding + implementation
- detector parts

COSINUS members at MPP

PhDs:

- Moritz Kellermann (start 01/21)
- Raghunath Mukund (planned 02/21)

Postdocs:

- Vanessa Zema
- Martin Stahlberg

Senior scientists / staff:

- Karoline Schäffner (MPRG group leader)
- Godehard Angloher
- Peter Mühlbauer

Construction/Electronics:

- Robert Stadler
- Christopher Jablonski
- Jens Schlammer

Members from CRESST:

- Federica Petricca
- Michele Mancuso
- Franz Pröbst

TIME LINE

Thank you for your support

and stay tuned, exciting time are ahead!

EXTRA MATERIAL

Extended pulse shape model

$$\Delta T_e(t) = \sum_{i=1}^3 A_i \left[e^{\lambda_i t} - e^{-t/\tau'_n} \right] + \sum_{i=1}^3 B_i \left[e^{\lambda_i t} - e^{-t/\tau_e} \right]$$

6 amplitude parameters

+ pulse onset

Based on F. Pröbst et al., J. Low Temp. Phys. 100, 69 (1995) developed by V. Zema, paper in preparation

Considers carrier as additional detector component, in particular power input from-and-to the carrier

Interpretation:

A-part = "phonon part", B-part = "light part"

Validation against data

$$\Delta T_e(t) = \sum_{i=1}^3 A_i \left[e^{\lambda_i t} - e^{-t/\tau'_n} \right] + \sum_{i=1}^3 B_i \left[e^{\lambda_i t} - e^{-t/\tau_e} \right]$$

Blue = A – part "phonon Nal part" Green = B – part "light part"

Nalce12

RESULT

Threshold: 1.8 keV sufficient

optimize rather exposure (mass) than threshold

Warning: Not updated for new DAMA result with 1keVee threshold

Outlook: Cut and count only \rightarrow Make use of spectral information for potentially stronger bounds

Nal EXPERIMENTS incomplete list!

BACKGROUND

South pole 17 kg Nal

energy: 4 keV_{ee}

3.5 y physics run no hint

LSC - Spain 112.5 kg Nal

energy: $< 1 \text{ keV}_{ee}$

spring 2017

DM-Ice17 ANAIS-112 COSINE-100

Y2L Korea KIMS Nal + DM-Ice 106 kg

energy: ~ 2 keV_{ee}

since Sept. 2016

SABRE

Gran Sasso/Australia 40-50 kg Nal

construction phase PoP 2020

KamLand-**PICO-lon**

KamLand/Japan 1t Nal

planning/ prototyping phase

KamLAND

NAI CRYSTAL RADIOPURITY PRELIMINARY ICP-MS RESULTS S. NISI (LNGS)

Sample	Powder	Crystal Grower	к	Rb	Pt	ті	Th	U
			ppb	ppb	ppb	ppm	ppb	ppb
MLL_V1	SICCAS	SICCAS	28000	8	<0.6	2.5	<0.015	<0.015
MLL_V2	SICCAS	SICCAS	1100	<3	6	180	<0.015	<0.015
Nal 4_1_1	Astrograde	SICCAS	350	<3	250	1800	0.1	0.2
DAMA/LIBRA crystal*			~13	<0.35		(0.7 – 10 x 10⁻³	0.5 – 7.5 x 10⁻³

COSINUS in STANDARD SCENARIO

Standard dark matter halo Fixed quenching factors: QF_{Na}=0.3, QF_I=0.09

Blue band: COSINUS projection (incl. stat. fluctuation) for 100kg days and 1keV nuclear recoil threshold

Dotted lines: Exemplary COSINUS projections for 100kg days and thresholds as in legend

DAMA/LIBRA and STANDARD SCENARIO

Most of experiments in exclude standard SI WIMP interaction with standard halo model

COSINE-100 excludes DAMA/LIBRA signal as standard SI WIMP interaction with standard halo model and using **Nal(TI) crystals**

RECENT Nal-based MODULATIONRESULTS

K. Schäffner