Introduction 000

Production of squarks and gluinos at the LHC: The electroweak contributions

Jan Germer Wolfgang Hollik, Edoardo Mirabella, Maike Trenkel

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG-Frühjahrstagung, Bonn, Germany March 15th, 2010

Introd uction	Squark and gluino prod. @ NLO EW	Results	Conclusions
000	0000	000	
Outline			

Introduction to colored SUSY particles @ LHC

- Production processes
- Status of higher order corrections.

EW contributions to squark and gluino production:

- EW tree-level contributions.
- NLO EW contributions of *O*(α²_sα): EW-type & QCD-type corrections.
 - \rightarrow Treatment of singularities.
- Solution Numerical results: Total cross-sections

Conclusions

Introd uction	Squark and gluino prod. @ NLO EW		
•00	0000	000	

Colored SUSY particles @ hadron colliders

• Squarks, gluinos and top squarks have high production rate at hadron colliders.

[Kane & Leveille '82, Harrison & Llewellyn Smith '83, Reya & Roy '85 Dawson, Eichten, Quigg '85, Baer & Tata '85]

Introd uction 000	Squark and gluino prod. @ NLO EW 0000	Results 000	
Status	of higher order corrections		
۲	$\mathcal{O}(\alpha_s^3)$: NLO QCD corrections for all [Beenakke [Beenakke] \rightarrow PROSI	production processes knowr r, Höpker, Spira, Zerwas '95&'97], r, Krämer, Plehn, Spira, Zerwas '98] PINO	1
٥	 Beyond NLO QCD: Approximate NNLO corrections (q̃q̃* NLL resummation g̃g, q̃g, q̃q̃*, q̃q̃ 	[Langenfeld, Moch '09], [Kulesza, Motyka '08'09], [Beneke, Falgari, Schwinn '07' [Beenakker, Brensing, Krämer Kulesza, Laenen, Niessen '09	09], ,]
9	LO EW contributions, LO one-loop (Tree-level, loop induced, Higgs enhanced) $\mathcal{O}(\alpha_{s}\alpha + \alpha^{2} + \alpha_{s}^{2}\alpha^{2} + \alpha_{s}^{4})$	[Bornhauser, Drees, Dreiner, Kim '07 '09], [Bozzi, Fuks, Klasen], [Arhib, Benbrik, Cheung, Yuan]	
۵	O(α ² _s α) : NLO EW corrections ğğ, q̃ğ, q̃q̃*, t̃t̃*, q̃q̃	[Hollik, Kollar, Trenkel '07], [Beccaria et. al. '08], [Hollik, Mirabella '08], [Hollik, Mirabella, Trenkel '08], [Mirabella '09]	

5/13

JG, Hollik, Mirabella, Trenkel

(in preparation)]

• $\mathcal{O}(\alpha^2)$: pure EW tree-level contributions ($\tilde{t}\tilde{t}^*$, $\tilde{q}\tilde{q}^{(*)}$ prod.), e.g.

• $\mathcal{O}(\alpha_{s}\alpha)$: EW-QCD tree-level interferences ($\tilde{q}\tilde{q}^{(*)}$ prod.), e.g.

O (α_sα): photon induced processes (t̃t*, q̃q*, g̃q prod.), e.g.

Squark and gluino prod. @ NLO EW Introd uction

Conclusions

NLO EW: Contributions of $\mathcal{O}(\alpha_s^2 \alpha)$

EW & QCD-like corrections have to be taken into account:

• QCD Born \times 1-loop amplitude $\mathcal{O}(\alpha_s \alpha)$, e.g.

• EW Born \times 1-loop amplitude $\mathcal{O}(\alpha_s^2)$, e.g.

 γ, Z^0 × QCD only box diagrams lead to non-vanishing interferences

Results

Real photon, gluon and quark radiation.

	Squark and gluino prod. @ NLO EW	
	0000	
Singularities &	divergences	

• UV divergences: Renormalization required.

CTs have to be evaluated at $\mathcal{O}\left(\alpha\right)$ and $\mathcal{O}\left(\alpha_{s}\right)$, respectively.

- quarks, squarks, gluino → renormalized on-shell Subtlety: Only three independent squark parameters for each generation. Treat LH down-type squark as dependent quantity.
- α_s → MS with five flavors (same definition as in pdf) Caution with ĝ_s: needs symmetry restoring counterterm.

• IR singularities:

 Cancel after combining virtual and real corrections.
 [Methods: mass regularization & phase space slicing; gluonic corrections: color correlations in EW-QCD interferences.]

• Collinear singularities:

- Real photon and gluon bremsstrahlung.
- Factorization and redefinition of the PDFs at $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha)$.

	Squark and gluino prod. @ NLO EW		
000	0000	000	
Eromourar	e la la put paramatara		
FLAILIEWOL	k A/ Induit Darameters		

- Feynman diagrams and amplitudes were generated and calculated within the FeynArts/FormCalc/Looptools framework. [Hahn]
- Input: SPS1a' parameter set.
 - GUT-scale parameters evolved to 1TeV (softSUSY) [Allanach]
 - Compute **OS** parameters.

 $\begin{array}{ll} m(\tilde{u}_L) = 560 \mathrm{GeV} & m(\tilde{d}_L) = 566 \mathrm{GeV} & m(\tilde{g}) = 609 \mathrm{GeV} \\ m(\tilde{u}_R) = 543 \mathrm{GeV} & m(\tilde{d}_R) = 539 \mathrm{GeV} \end{array}$

- **Renormalization scale** for α_s : $\mathcal{O}(\text{mass of external particles})$
- PDF set: MRST2004QED [Martin, Roberts, Stirling, Thorne]

Total hadronic	X-section		
000		•00	Concrusions
Introduction	Squark and gluing prod @ NLO EW	Peculto	Conclusions

Born and EW contributions to the total cross section:

с. I	σ^{LO}	$\Delta \sigma^{NLO}$	$\Delta \sigma^{\gamma g/\gamma q}$	$\Delta \sigma^{EW,LO}$	5
final state	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2 \alpha)$	$\mathcal{O}(\alpha_{s}\alpha)$	$\mathcal{O}(\alpha^2 + \alpha_s \alpha)$	0
<u>ĝ</u> ĝ	6187 fb	—4 fb	_	_	0.07%
ĝq	20827 fb	—238 fb	10 fb	_	-1.1 %
ĨĨ*	2856 fb	—54 fb	42 fb	2 fb	-0.4 %
$\mathbf{ ilde{q}}\mathbf{ ilde{q}}^{*}$	2251 fb	$-12~{ m fb}$	24 fb	—37 fb	-1.1%
q̃q̃	5444 fb	-147 fb	_	413 fb	4.9 %

 $\delta = (\Delta \sigma^{NLO} + \Delta \sigma^{\gamma g/\gamma q} + \Delta \sigma^{EW,LO}) / \sigma^{LO}$

000	0000	000
T 1 1 1 1		

Total hadronic X-section, LL only

Born and **EW** contributions to the **total cross section**:

с I	σ^{LO}	$\Delta \sigma^{NLO}$	$\Delta \sigma^{\gamma g/\gamma q}$	$\Delta \sigma^{EW,LO}$	S
final state	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2 \alpha)$	$\mathcal{O}(\alpha_s \alpha)$	$\mathcal{O}(\alpha^2 + \alpha_s \alpha)$	0
ĝĝ	6187 fb	—4 fb	_	_	0.07%
ĝq̃∟	10010 fb	—248 fb	5 fb	_	- 2.4 %
$\tilde{\mathbf{t}}_2 \tilde{\mathbf{t}}_2^*$	186 fb	—31.6 fb	3.8 fb	0.3 fb	-14.8%
q̃∟ q̃Ľ	1016 fb	-4 fb	11 fb	-80 fb	-7.1%
ĨL ĨL	1718 fb	—75 fb	_	379 fb	17.6%

 $\delta = (\Delta \sigma^{NLO} + \Delta \sigma^{\gamma g/\gamma q} + \Delta \sigma^{EW,LO}) / \sigma^{LO}$

Summary & C	anduciona	000	
Introduction	Squark and gluino prod. @ NLO EW	Results	Conclusions
000	0000	000	

- Squarks and gluinos will be produced at a very high rate @LHC.
- Presented: EW contributions up to $\mathcal{O}(\alpha_s^2 \alpha)$ to colored particle production.
- Size of EW NLO corrections depends on squark chirality:
 → Only a few percent in the inclusive case.
 - \rightarrow Can be >10% in the case of left-handed particle production.
- EW corrections for qq more important for light squarks and heavy gluinos.

Summary &	Conclusions	
	Squark and gluino prod. @ NLO EW	Conclusions

- Squarks and gluinos will be produced at a very high rate @LHC.
- Presented: EW contributions up to $\mathcal{O}(\alpha_s^2 \alpha)$ to colored particle production.
- Size of EW NLO corrections depends on squark chirality:
 → Only a few percent in the inclusive case.
 - \rightarrow Can be >10% in the case of left-handed particle production.
- EW corrections for qq more important for light squarks and heavy gluinos.

Thank you for your attention !!!

	Squark and gluino prod. @ NLO EW		Conclusions
000	0000	000	

Backup Slides

Introduction	Squark and gluino prod. @ NLO EW	Results	Conclusions
000	0000	000	
Scale dependence			

Scale dependence of EW tree-level and EW NLO cross section: (Consider only processes with non vanishing tree-level interference.)

- Renormalization scale (μ_{ren}) is set equal to factorization scale (μ_{fac}) .
- Scale dependence reduces when NLO EW corrections are taken into account.

• Further analysis needs improved theoretical predictions.

