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• Summary and outlook
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GERmanium Detector Array (GERDA)

Is a double beta decay experiment in the underground laboratory LNGS, Italy

• Enriched germanium is servng as source and detector at the same time.

• Extremely long half life→ extremely low background

• Bare HPGe detectors are operated in LN/LAr

• LAr is:

 1. cooling liquid
2. passive shielding
3. scintillator

Could we use LAr scintillation light to build an active veto in a low background
experiment like GERDA?
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GERDA
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Motivation of a LAr veto

The 0νββ (2n→ 2p + 2e) decay is a single site event.

Segmented detectors can identify
multi site events as background.
However if singly Compton
scattered gamma escapes detector
no identification as background is
possible.

0νββ decay Q-value = 2.039MeV. In principal all γ sources with a higher energy are
dangerous.
208Tl e.g. from the decay chain of natural 232Th emits γ with an energy of 2.614MeV.

Detecting scintillation light in LAr from Compton scattered gammas could
increase background identification efficieny.
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Heidelberg setup
The GERDA group from MPIK in Heidelberg accomplished background
suppression via LAr scintillation light read out with PMTs.(2008JINST 3
P08007)

A background suppression of a factor of ten observed by the Heidelberg Group
motivated our studies.
March 17, 2010 5



Our goal

PMTs weigh about one kilogram. Their radioactivity is high
→ Our goal is to replace conventional PMTs by SiPMs

Silicon Photo Multiplier characteristics:

• Very small devices (mass of some mg). We expect a much lower
radioactivity.

• They do work at cryogenic temperatures

• Do not require HV (HV can lead to problems in Ar atmosphere)

• UV sensitive. Peak is at 400nm

• High photon detection efficiency (PDE) of up to 65%

• Relatively cheap

=⇒ excellent candidate for active veto in LAr
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So what is a SiPM?

Take a couple of APDs in Geiger
mode...

... and arrange them in an array

This is what a SiPM chip looks like The number of fired pixels will tell
how many photons were detected.
Outstanding 1p.e resolution!
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Photon counting
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Definition of some important SiPM parameters

Dark rate
The firing rate of a SiPM when
not illuminated. This is typically
due to thermal pulses and their
afterpulses.

Gain
The gain is the charge
amplification of a SiPM.

Gain = charge output of the SiPM
elemental charge

Breakdown voltage
The Vbd is the minimum bias
required to operate a SiPM in
Geiger mode. The Gain at Vbd
is zero, by definition.
We therefore operate at
Vbias=Vbd+Vover

Quenching resistor
Quenching resistor
extinguishes the avalanche
discharge of a SiPM by
decreasing the voltage in
the highfield region below
Vbd. Without quenching the
discharge would not come to
an end.
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SiPM properties at cryogenic temperature
• Equipment and experimental setup.

• Pulse shape in LN.

• Gain as a function of temperature and bias.

• Dark rate as a function of temperature.
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Hamamatsu’s MPPC

We tested three different SiPMs. The following specifications were given by
Hamamatsu.

Number of pixels 100 400 1600
Pixel size 100µm × 100µm 50µm × 50µm 25µm × 25µm
PDE at peak value 65% 50% 25%
Dark count at RT 600-1000 kHz 400-800 kHz 300 - 600 kHz
Gain at RT 2.75×106 7.5×105 2.4×105

March 17, 2010 10



Setup

• Bias circuit and preamplifier built on
one printed circuit board at room
temperature

• SiPM is submerged in LN

• coax. cable between the SiPM and
the PCB

• Gas tight dewar filled with LN

• LN evaporates slowly
→ temperature increases continuously

• PT100 for temperature readout
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Pulse shape in LN

The decay time increases at low temperatures by a factor of 6.

RT LN

τ = 45ns τ = 440ns

The quenching resistor is temperature dependent. Slow component from RC-circuit. Sharp
peak from parasitic capacitances.
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Gain v. temperature and bias

Does the gain change at LN temperature?

The gain is not a function of the temperature. But the gain strongly depends on Vover.
Vbd = Vbd(T)→ To operate at constant overvoltage one has to adjust the bias.
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Dark rate v. temperature

A nice property of SiPMs is the dark rate reduction at low temperatures.
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Up to 6 orders of magnitude reduction in dark rate. =⇒ Excellent candidate for low count rate
experiments!

The crosstalk can be derived from the ratio of dark rate with 0.5 and 1.5 p.e threshold. It
is not temperature dependant.
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Summary ...

• SiPMs are appropriate detection devices for LAr scintillation light read out

• We know how they work at cryogenic temperatures. By cooling we can reduce the dark
counts significantly without any loss of gain.

...and outlook

• Proof of principle texperiment using SiPMs and WLS-fibre to read out LAr scintillation light
has been accomplished. First results look very promising.

• Now we are building an improved setup.

• MC simulations for a GERDA like experiment with LAr veto will be done.
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Thank you for your attention
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Correction curves

There is the problem of nonlinearity as more than one photon can hit the same pixel at once
→ However correction curves exist.

Nfired = Npix(1− e−Npe/Npix)(1 + p e
−Npe/Npix)

Npix number of pixels
p cross talk probability
Npe = Nphotons ×Q.E.
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Photon Detection Efficiency

• APD QE peak 70% is a typical value

• Fill factor is 78.5 , 61.5, 30.8 for the 100, 400, 1600 pixel MPPC’s
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