# Measurement of the Background for MSSM $A \to \mu^+ \mu^-$ Higgs Searches with ATLAS

Sebastian Stern

sebastian.stern@cern.ch

Max-Planck-Institut für Physik München

### DPG Frühjahrstagung Bonn 2010 March 17th 2010







### The Higgs Sector in the MSSM

### Higgs Bosons in the Minimal Supersymmetric Extension of the Standard Model

- Two Higgs doublets resulting in five physical Higgs bosons: A, h, H,  $H^{\pm}$ .
- At tree level, the Higgs sector is determined by only two free parameters:  $M_A$  and  $\tan \beta = \frac{v_1}{v_2}$  ( $v_{1,2}$ : VEVs for two Higgs doublets).
- Tevatron results exclude  $\tan \beta > 40$  for Higgs bosons with  $M_A > 100$  GeV.  $\Rightarrow$  Presented studies assume  $\tan \beta = 40$  to probe the exclusion in  $A \rightarrow \mu^+ \mu^$ channel with early ATLAS data (with  $\sqrt{s} = 10$  TeV p-p collsions).

### Dominant Production Modes at the LHC

t/b - - h/H/A



(dominant for  $\tan \beta < 10$ )

### Important Decay Channels

- $h/H/A \rightarrow b\bar{b}$ : Largest branching ratio (~ 90 %) but large QCD background.
- $h/H/A \rightarrow \tau \tau$ : Branching ratio  $\sim 10 \%$ , but neutrino contribution in final state.
- $h/H/A \rightarrow \mu\mu$ : Low branching ratio (0.04%) but excellent muon reconstruction.

MSSM Higgs Bosons  $A o \mu\mu$  Background Estimation Systematics Exclusion Limits Conclusions Sebastian Stem

### $A \rightarrow \mu^+ \mu^-$ Higgs Searches at $\sqrt{s} = 10 \text{ TeV}$

#### Challenge in the $A \rightarrow \mu^+ \mu^-$ channel:

- low production cross section:  $\sim 10\,{\rm fb}$
- large SM backgrounds: Z (+ jets) (1.2 nb),  $t\bar{t}$  (0.4 nb)

**Event Pre-Selection:**  $\mu^+\mu^-$ -pair,  $p_T^{\mu} > 20$  GeV, low missing transverse energy



#### $\Rightarrow$ Reliable background estimation is essential.

- Monte Carlo predictions sensitive to detector-related & theoretical uncertainties.
- Background can be extracted from side-bands of the signal region.
- Alternatively signal-free control data samples can be used.



#### Concept (valid on particle level)

- $BR(A \to e^+e^-) = 10^{-8}$
- $BR(Z \to e^+e^-) = BR(Z \to \mu^+\mu^-)$
- $BR(t\bar{t} \rightarrow e^+e^-) = BR(t\bar{t} \rightarrow \mu^+\mu^-) = BR(t\bar{t} \rightarrow e^{\pm}\mu^{\mp}) \times 0.5$
- Kinematic properties of  $\mu^+\mu^-$ ,  $e^+e^-$  and  $e^\pm\mu^\mp$  final states are equal at leading order.

 $\Rightarrow$  | ee and  $\mu\mu$  invariant mass distributions of background processes are identical!

#### Strategy:

- 1 Measure events with  $\mu^+\mu^-$ ,  $e^+e^-$  and  $e^\pm\mu^\mp$  final states
- 2 Estimate  $\mu^+\mu^-$  background from  $e^+e^-$  final state (sum of Z and  $t\bar{t}$ )
- **3** Additionally:  $t\bar{t}$  contribution from  $e^{\pm}\mu^{\mp}$

#### Fact or Fiction: The reconstruction level

Impact of detector and higher order physics effects on invariant mass distributions need to be studied!

### **Dilepton Final States**

Invariant mass distributions after same selection cuts on electron and muon events



Quantitative comparision of  $e^+e^-$  and  $\mu^+\mu^-$  distributions:



### Agreement of Invariant Mass Distributions

#### Particle Level

(lowest order perturbation theory) Invariant mass distributions in perfect agreement.

#### Effect I: Lepton Energy Losses

- Electrons loose more energy due to photon radiation compared to muons.
- Radiated photons cannot be reconstructed  $\Rightarrow$  No correction of invariant mass spectra possible.
- BUT: Only small effect for  $M_{ll} > 120 \text{ GeV}$

#### Effect II: Lepton Momentum Resolution

Difference in lepton momentum resolutions can be neglected.

#### Effect III: Lepton Reconstruction Efficiency Main effect $\Rightarrow$ Compared to muons, there are significantly less electrons reconstructed. Effect needs to be corrected!





### Correction for Lepton Reconstruction Efficiencies



Efficiency for muons  $\sim 20\%$  higher than for electrons:  $\Rightarrow$  Significant effect on the normalization of the invariant mass distributions.



### Efficiency Correction

- $\bullet$  Measure efficiency for isolated leptons using inclusive Z events.
- Parametrize efficiencies in  $p_T$  and  $\eta$  bins.

• Re-weight every reconstructed event with:  $\frac{1}{\epsilon_1(p_{T1},\eta_1)} \times \frac{1}{\epsilon_2(p_{T2},\eta_2)}$ 



Clear improvement after correction procedure.

⇒ Correction applied for all further results.

### Control Samples: Results in 0 b-jet Final State



reconstruction level  $@4 \text{ fb}^{-1}:$ 



### For a quantitative comparision...

...of control samples and acctual background:

- Fit a constant  $(p_0)$  to  $e^+e^-/\mu^+\mu^-$  ratio
- Normalization given by 1 − p<sub>0</sub> (p<sub>0</sub>: fit parameter)
- Shape accuracy given by relative error on fit parameter:  $\delta p_0/p_0$

### Characteristics of the 0 b-jet final state

- Huge contribution of Z background.
- Good statistics even for low integrated luminosities.

### **Results:**

- maximum accuracy achievable with integrated luminosity  $\geq 1$  fb<sup>-1</sup>.
- very good results already with  $\geq 0.2 \text{ fb}^{-1}$ .
- very precise prediction of background shape (∼ 2 − 4%).
- background normalization  $\sim 5\%$  too low.

### Control Samples: Results in b-jet Final State



reconstruction level  $@4 \text{ fb}^{-1}$ 



### Characteristics of the *b*-jet final state

- Good suppression of the dominant Z background.
- $\sim 100$  times lower statistics compared to 0 *b*-jet final state.

### **Results:**

- "reasonable" results for integrated luminosities  $\geq 4 \text{ fb}^{-1}$ .
- background normalization  $(1 p_0) \sim 15\%$  too low.
- shape accuracy  $(\delta p_0/p_0)$  of  $e^+e^-$  control sample:  $\sim 7\%$ .
- shape accuracy  $(\delta p_0/p_0)$  of  $e^{\pm}\mu^{\mp}$  control sample:  $\sim 15\%$  due to even less statistics.

## BUT: With looser event selection in this final state the performance of the background estimation can be doubled!

### **Detector-Related Uncertainties**

Detector-related sources of uncertainties:

- muon, electron, jet reconstruction and
- b-tagging performance

#### Example: Impact of different error sources in 0 b-jet final state @ 1 fb<sup>-1</sup>

Fitting  $N_{ee}/N_{\mu\mu}$  distributions with a constant  $p_0 \pm \delta p_0$ :



 $\Rightarrow$  only small variations of  $N_{ee}/N_{\mu\mu}$  distributions observed: Dominant source of systematic errors: jet energy scale

- background normalization degrades to at most 10% (compared to 5% in case of no systematics).
- shape accuarcy changes from original 1.6% to at most 1.7%.

Control samples provide very accurate and robust prediction of background shape!

### **Exclusion Limits**



### Exclusion limits used to evaluate performance of background estimation.

- Exclusion limits obtained from fit of (signal + background) parametrization to invariant mass distributions.
- Calculated with the profile likelihood method. (CERN-OPEN-2008-020)
- Fit  $f_{SB} = f_S + f_B$  to data - Two scenarios for determination of  $f_B$ : A: Fit to side-bands only B: Fit side-bands + control samples -  $\mu\mu$  signal + background -  $\mu\mu$  signal + background

#### TLAS work in progres ATLAS work in progres L=1 fb<sup>-1</sup>. >0 b-iets L=1 fb<sup>-1</sup>, 0 b-iets 10 Signal(x10)+Background =150 GeV, tanβ=40 120 140 160 180 200 140 160 180 invariant mass M<sub>ini</sub> [GeV] invariant mass M.... [GeV]

#### Signal strength with respect to MSSM cross section for exclusion at $95\%~{\rm CL}$

|         |   | 0 b-jet final state    |                        |                        | $> 0 \ b$ -jet final state |                        |                        |  |
|---------|---|------------------------|------------------------|------------------------|----------------------------|------------------------|------------------------|--|
| $M_A$   |   | $0.2 \; {\rm fb}^{-1}$ | $1.0 \; {\rm fb}^{-1}$ | $4.0 \; {\rm fb}^{-1}$ | $0.2 \text{ fb}^{-1}$      | $1.0 \; {\rm fb}^{-1}$ | $4.0 \; {\rm fb}^{-1}$ |  |
| 130 GeV | А | 1.98                   | 0.91                   | 0.49                   | ×                          | ×                      | 0.57                   |  |
|         | В | 1.93                   | 0.88                   | 0.47                   | 2.52                       | 0.95                   | 0.54                   |  |
| 150 GeV | А | 1.68                   | 0.62                   | 0.22                   | ×                          | ×                      | 0.80                   |  |
|         | В | 1.67                   | 0.61                   | 0.21                   | 4.24                       | 1.31                   | 0.75                   |  |
| 200 GeV | А | 4.48                   | 2.00                   | 0.99                   | ×                          | ×                      | 0.50                   |  |
|         | В | 4.23                   | 1.80                   | 0.88                   | ×                          | 1.25                   | 0.50                   |  |

MSSM Higgs Bosons  $A \rightarrow \mu \mu$  Background Estimation Systematics Exclusion Limits Conclusions



- Signal-free control samples from electron final states can be used for the background estimation in  $A \to \mu^+ \mu^-$  searches.
- Control samples provide good information on the background shape, even with low statistics.
- Information from control samples is crucial for evaluation of exclusion limits for early data!

### Plans for early ATLAS data ( $\geq 200 \text{ pb}^{-1} \cong \text{end of } 2010$ )

 $\Rightarrow$  Set first exclusion limits.

Plans for very early ATLAS data ( $\geq 10 \text{ pb}^{-1} \cong \text{after few months operation}$ )

 $\Rightarrow$  Test the performance of the method with  $Z \to e^+ e^-$  and  $Z \to \mu^+ \mu^-$  events.



### Cut Evolution



### cross section $\times$ selection efficiency for $1\,fb^{-1}$ @ $10\,{\rm TeV}$

| Cuts                               | bbA*     | Z incl.                             | Z+jets                                                    | Zbb                                                       | ttbar                                    |
|------------------------------------|----------|-------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| no cut<br>preselection             | 38<br>29 | $\frac{1.1\cdot10^6}{477\cdot10^3}$ | $\begin{array}{c} 1.2\cdot10^6\\ 473\cdot10^3\end{array}$ | $\begin{array}{c} 20\cdot10^3 \\ 10\cdot10^3 \end{array}$ | $374 \cdot 10^{3}$<br>$5.4 \cdot 10^{3}$ |
| MET                                | 29       | $477 \cdot 10^{3}$                  | $472 \cdot 10^{3}$                                        | $10 \cdot 10^{3}$                                         | $1.3 \cdot 10^{3}$                       |
|                                    |          | 0 b-jet anal                        | ysis                                                      |                                                           |                                          |
| b-jet veto                         | 23       | $470 \cdot 10^3$                    | $467 \cdot 10^3$                                          | $7.3\cdot 10^3$                                           | 219                                      |
| $\Delta m = 150 \pm 7 \text{ GeV}$ | 20       | $8.6\cdot 10^2$                     | $8.9\cdot 10^2$                                           | 9.9                                                       | 13                                       |
|                                    |          |                                     | . I                                                       |                                                           |                                          |
|                                    |          | > 0 b-jet ana                       | aiysis                                                    |                                                           |                                          |
| b-jet requirement                  | 6        | $7.1\cdot 10^3$                     | $5.0\cdot 10^3$                                           | $2.6 \cdot 10^3$                                          | $1.1\cdot 10^3$                          |
| $\cos\Delta\phi_{\mu\mu}$          | 6        | $6.6 \cdot 10^3$                    | $4.6 \cdot 10^{3}$                                        | $2.4 \cdot 10^3$                                          | 870                                      |
| jet $p_T$ sum                      | 4        | $5.2 \cdot 10^3$                    | $3.0 \cdot 10^3$                                          | $1.4 \cdot 10^3$                                          | 125                                      |
| $\Delta m = 150 \pm 7 \text{ GeV}$ | 4        | 12                                  | 2.7                                                       | 1.7                                                       | 9                                        |

\*  $M_A = 150 \text{ GeV}$ ,  $\tan \beta = 40$ : A resonance only, H not added

### FSR Correction at Reconstruction Level



### **FSR correction** in principle easy: $(M_{ll})^2 = (\mathbf{p}_1 + \mathbf{p}_2)^2 \Rightarrow (M_{ll}^{corr})^2 = [(\mathbf{p}_1 + \mathbf{p}_\gamma) + \mathbf{p}_2]^2$ $\Rightarrow$ Profit depends on FSR photon reconstruction performance.



FSR photon selection:

- Truth level: Photons from a Z decay with small angular distance to mother lepton (ΔR < 0.5).</li>
- Reconstruction level: Photons with small angular distance to reconstructed lepton ( $\Delta R < 0.25$ ).

| $Z \to \mu^+ \mu^-$ | truth   | reconstruction | $Z \to e^+ e^-$  | truth   | reconstruction |
|---------------------|---------|----------------|------------------|---------|----------------|
| Total               | 4547602 | 4547602        | Total            | 4547602 | 4547602        |
| $N_{\gamma} = 0$    | 4056220 | 4538465        | $N_{\gamma} = 0$ | 3683440 | 4546761        |
| $N_{\gamma} = 1$    | 460509  | 9066           | $N_{\gamma} = 1$ | 763699  | 827            |
| $N_{\gamma} > 1$    | 30873   | 71             | $N_{\gamma} > 1$ | 100133  | 14             |

FSR correction performs well on reconstruction level! But only very few photons are reconstructed.

### The Effect of Lepton Momentum Resolution



Correction of a limited detector resolution is difficult.

But: Effects of limited momentum resolution can be studied on MC truth.

- Calculate momentum resolution using MC
- Smear out truth momenta according to this resolution in p<sub>T</sub> bins
- Reconstruct Z mass with smeared 4-momenta

⇒ Effect on agreement of invariant mass distributions due to different electron and muon momentum resolutions negligible!





### Method to measure detector performance parameters directly from data.



### Looser Event Selection in *b*-jet Final State



Early data analysis of > 0 *b*-jet final state difficult due to very low statistics.  $\rightarrow$  gain events by loosening the event selection.

| Standard Event Selection @ 1 fb $^{-1}$ | Looser Event Selection @ $1 \text{ fb}^{-1}$ |  |  |  |
|-----------------------------------------|----------------------------------------------|--|--|--|
| • 6 signal events                       | • 8 signal events                            |  |  |  |
| • $22 Z$ events                         | • $30 Z$ events                              |  |  |  |
| • $12 \ t\bar{t}$ events                | • $63 t\bar{t}$ events                       |  |  |  |

|                                         | 0 l      | -jet     | <i>b</i> -jet |          |                     |       |
|-----------------------------------------|----------|----------|---------------|----------|---------------------|-------|
|                                         | total ba | ckground | total ba      | ckground | $tar{t}$ background |       |
|                                         | norm.    | shape    | norm.         | shape    | norm.               | shape |
| truth level @ $4 \text{ fb}^{-1}$       | < 6%     | < 1%     | 9%            | < 3%     | 6%                  | 3%    |
| standard selection $@4 	ext{ fb}^{-1}$  | < 6%     | < 1%     | 15%           | 7%       | 16%                 | 17%   |
| standard selection @ $1~{ m fb}^{-1}$   | 6%       | 2%       | 16%           | 19%      | 45%                 | 50%   |
| standard selection @ $0.2~{ m fb}^{-1}$ | 7%       | < 5%     | -             | _        | _                   | _     |
| loose selection @ 4 fb $^{-1}$          | -        | —        | 9%            | < 4%     | 15%                 | < 6%  |

### Fit Performance

### Fit Functions

• Background parametrization:

$$f_B(x) = \frac{p_0}{x} \left[ \frac{1}{(x^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + p_1 \cdot \exp\left(-p_2 \cdot x\right) \right]$$

• Signal + background parametrization:

$$f_{SB}(x) = f_B + p_3 \cdot \frac{1}{\sqrt{2\pi}p_4} \cdot \exp\left(-\frac{(x-p_5)^2}{2p_4^2}\right)$$

#### Success rate of the fit

#### A: Fit to side-bands only

B: Fit to side-bands and control samples

|                  |   | 0                  | b-jet final sta     | ate                 | > 0 <i>b</i> -jet final state |                     |                     |  |
|------------------|---|--------------------|---------------------|---------------------|-------------------------------|---------------------|---------------------|--|
| $M_A$            |   | $0.2~{ m fb}^{-1}$ | $1.0~{\rm fb}^{-1}$ | $4.0~{\rm fb}^{-1}$ | $  0.2 \text{ fb}^{-1}$       | $1.0~{\rm fb}^{-1}$ | $4.0~{\rm fb}^{-1}$ |  |
| $130  {\rm GeV}$ | А | 60%                | 61%                 | 83%                 | 0.6%                          | 4%                  | 15%                 |  |
|                  | В | 97%                | 95%                 | 89%                 | 86%                           | 82%                 | 76%                 |  |
| $150 { m GeV}$   | А | 50%                | 64%                 | 78%                 | 0.6%                          | 3%                  | 15%                 |  |
|                  | В | 88%                | 94%                 | 87%                 | 86%                           | 81%                 | 79%                 |  |
| $200~{\rm GeV}$  | А | 52%                | 65%                 | 82%                 | 0.5%                          | 5%                  | 18%                 |  |
|                  | В | 84%                | 94%                 | 86%                 | 61%                           | 74%                 | 87%                 |  |

