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The Higgs Sector in the MSSM

Higgs Bosons in the Minimal Supersymmetric Extension of the Standard Model

@ Two Higgs doublets resulting in five physical Higgs bosons: A, h, H, HE.
@ At tree level, the Higgs sector is determined by only two free parameters: M4
and tan 8 = % (v1,2: VEVs for two Higgs doublets).

@ Tevatron results exclude tan 3 > 40 for Higgs bosons with M 4 > 100 GeV.
= Presented studies assume tan 3 = 40 to probe the exclusion in A — puTpu~
channel with early ATLAS data (with /s = 10 TeV p-p collsions).

Dominant Production Modes at the LHC

Direct production Associated b-quark production
t/b
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Important Decay Channels

@ h/H/A — bb: Largest branching ratio (~ 90 %) but large QCD background.
@ h/H/A — 77: Branching ratio ~ 10 %, but neutrino contribution in final state.

@ h/H/A — pp: Low branching ratio (0.04 %) but excellent muon reconstruction.
MSSM Higgs Bosons




A — utp~ Higgs Searches at /s

Challenge in the A — ptu~ channel:

- low production cross section: ~ 10 fb

- large SM backgrounds: Z (+ jets) (1.2nb), ¢t (0.4 nb)

Event Pre-Selection: ptp—-pair, p% > 20 GeV, low missing transverse energy
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= Reliable background estimation is essential.

@ Monte Carlo predictions sensitive to detector-related & theoretical uncertainties.

@ Background can be extracted from side-bands of the signal region.

@ Alternatively signal-free control data samples can be used.



Background Estimation from Control Samples

Concept (valid on particle level)
@ BR(A—ete”)=10"8
@ BR(Z —»ete”)=BR(Z — ptpu™)
@ BR(tt — ete™) = BR(tt — uTp~) = BR(tt — eTp¥F) x 0.5
o

Kinematic properties of ut =, ete™ and eT T final states are equal at
leading order.

= ‘ ee and pp invariant mass distributions of background processes are identical! ‘

Strategy:
@ Measure events with ', ete™ and et puF final states
@ Estimate up~ background from eTe™ final state (sum of Z and tf)
© Additionally: tf contribution from e pF

Fact or Fiction: The reconstruction level

Impact of detector and higher order physics effects on invariant mass distributions
need to be studied!
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Dilepton Final States

Invariant mass distributions after same selection cuts on electron and muon events
(for example: 0 b-jet final state)
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Quantitative comparision of e*e™ and /ﬁ,u’ distributions:
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Agreement of Invariant Mass Distributions

Particle Level
(lowest order perturbation theory)
Invariant mass distributions in perfect agreement.

Effect I: Lepton Energy Losses

- Electrons loose more energy due to photon
radiation compared to muons.

- Radiated photons cannot be reconstructed = No
correction of invariant mass spectra possible.

- BUT: Only small effect for M;; > 120 GeV

Effect Il: Lepton Momentum Resolution
Difference in lepton momentum resolutions can be
neglected.

Effect 11l: Lepton Reconstruction Efficiency
Main effect = Compared to muons, there are
significantly less electrons reconstructed.
Effect needs to be corrected!
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@ Measure efficiency for isolated leptons using inclusive Z events.

@ Parametrize efficiencies in pr and 7 bins.
1

1

@ Re-weight every reconstructed event with:

X
e1(pT1,m1)

e2(pT2,m2)
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Control Samples: Results in 0 b-jet Final State

reconstruction level @ 4 fb~1:
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For a quantitative comparision...

...of control samples and acctual Results:

background: @ maximum accuracy achievable with

@ Fit a constant (po) to integrated luminosity > 1 fb~1.

ete” /utp™ ratio @ very good results already with
>0.2 b=t

@ Normalization given by 1 — pg ) .
@ very precise prediction of background

(po: fit parameter) shape (~ 2 — 4%).

) ShaRe accuracy g_iven by @ background normalization ~ 5% too low.
relative error on fit parameter:
po/po
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Control Samples: Results in b-jet Final State

reconstruction level @4 fb~1
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Characteristics of the b-jet final state
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compared to 0 b-jet final state.

Results:
@ ‘“reasonable” results for integrated luminosities > 4 fb—1.
@ background normalization (1 — pg) ~ 15% too low.
@ shape accuracy (dpo/po) of ete™ control sample: ~ 7%.

@ shape accuracy (po/po) of e*u¥F control sample: ~ 15% due to even less
statistics.

BUT: With looser event selection in this final state the performance of
the background estimation can be doubled!

Background Estimation



Detector-Related Uncertainties

Detector-related sources of uncertainties:
@ muon, electron, jet reconstruction and

@ b-tagging performance

Example: Impact of different error sources in 0 b-jet final state @ 1 fb~*

Fitting Nee /N, distributions with a constant pg =+ dpo:
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= only small variations of N../N,, distributions observed:
Dominant source of systematic errors: jet energy scale

@ background normalization degrades to at most 10% (compared to 5% in case of
no systematics).

@ shape accuarcy changes from original 1.6% to at most 1.7%.

Control samples provide very accurate and robust prediction of background shape!

Systematics



Exclusion Limits

Exclusion limits used to evaluate performance of background estimation.

@ Exclusion limits obtained from fit of (signal + background) parametrization to
invariant mass distributions.

@ Calculated with the profile likelihood method. (CERN-OPEN-2008-020)

- Fit fsp = fs + fB to data

- Two scenarios for
determination of fp:
A: Fit to side-bands only

B: Fit side-bands + control samples

0 b-jet final state
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- pp signal + background
| |

L=1 1", >0 b-jets
Signal(x10)+Background
m,=150 GeV, tanp=40

| L
120 140 160 180 200
invariant mass M,,, [GeV]

> 0 b-jet final state

40 160 180
invariant mass M,

|
120 200
[GeV]

M, 02f-t 1.0fb~! 40fm"! | 02! 10f"! 40f!
130 GeV A 1.98 0.91 0.49 X 0.57
B 1.93 0.88 0.47 2.52 0.95 0.54
150 GeV A 1.68 0.62 0.22 x 0.80
B 1.67 0.61 0.21 4.24 1.31 0.75
200 GeV A 4.48 2.00 0.99 x 0.50
B 4.23 1.80 0.88 X 1.25 0.50

Exclusion Limits



Conclusions & Plans

@ Signal-free control samples from electron final states can be used for the
background estimation in A — p 1~ searches.

@ Control samples provide good information on the background shape, even
with low statistics.

@ Information from control samples is crucial for evaluation of exclusion
limits for early data!

Plans for early ATLAS data (> 200 pb™" = end of 2010)

= Set first exclusion limits.

Plans for very early ATLAS data (> 10 pb™' = after few months operation)

= Test the performance of the method with Z — ete™ and Z — ptp~
events.

Conclusions
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Cut Evolution

cross section x selection efficiency for 1 f6=! @ 10 TeV

Cuts bbA* Z incl. Z+jets Zbb ttbar
no cut 38 1.1-10° 1.2-10% 20-10®° 374-10°
preselection 29 47710  473-10°  10-10® 5.4-10°
MET 29 477-10%  472-100  10-10° 1.3-103

0 b-jet analysis

b-jet veto 23 470-10°  467-10% 7.3-10° 219
Am=150+7 GeV 20 8.6-10> 8.9-10° 9.9 13

> 0 b-jet analysis

b-jet requirement 6 7.1-10% 5.0-10° 26-10°> 1.1-10°
€08 Ay 6 6.6-10° 4.6-10° 24-10° 870
jet pr sum 4 5.2-10° 3.0-10®> 1.4-10° 125
Am=150+7 GeV 4 12 2.7 1.7 9

* Ma = 150 GeV, tan 8 = 40: A resonance only, H not added



FSR Correction at Reconstruction Level

FSR correction in principle easy: (M;;)? = (p1 + p2)? = (M[°"")? = [(p1 + py) + p2]°
= Profit depends on FSR photon reconstruction performance.
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FSR photon selection:
@ Truth level: Photons from a Z decay with small angular distance to mother
lepton (AR < 0.5).

@ Reconstruction level: Photons with small angular distance to reconstructed
lepton (AR < 0.25).
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truth | reconstruction truth | reconstruction
Total 4547602 4547602 Total 4547602 4547602
N, =0 4056220 4538465 Ny =0 3683440 4546761
Ny =1 460509 9066 Ny =1 763699 827
Ny>1 30873 71 Ny >1 100133 14

FSR correction performs well on reconstruction level!
But only very few photons are reconstructed.



The Effect of Lepton Momentum Resolution

Correction of a limited detector resolution is difficult.

But: Effects of limited momentum resolution can be studied on MC truth.

© Calculate momentum resolution
using MC

@ Smear out truth momenta
according to this resolution in pr
bins

© Reconstruct Z mass with smeared
4-momenta

= Effect on agreement of invariant
mass distributions due to different
electron and muon momentum
resolutions negligible!
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The Tag & Probe Method

Method to measure detector performance parameters directly from data.

Example: Muon Reconstruction Efficiency

Probe Muon

Y —— T

Efficiency =

@ Select Z events with high purity:

- two isolated tracks
- opposite charge

- same vertex

- ]\/[track.s ~ MZ

@ One track reconstructed as muon
— “tag”-muon
—s identifies Z — ptp~ decay

Tag Muon © Second track (“probe”) used to
calculate muon rec. efficiency.

number of probes reconstructed as muons

number of all probes




Looser Event Selection in b-jet Final State

Early data analysis of > 0 b-jet final state difficult due to very low statistics.
— gain events by loosening the event selection.

Standard Event Selection @ 1 fb~! Looser Event Selection @ 1 fb—!
@ 6 signal events @ 8 signal events
@ 22 Z events @ 30 Z events
@ 12 tt events @ 63 tt events
0 b-jet b-jet
total background  total background tt background
norm. shape norm. shape norm. shape
truth level @ 4 fb—1T < 6% < 1% 9% < 3% 6% 3%
standard selection @ 4 fb—1 < 6% < 1% 15% 7% 16% 17%
standard selection @ 1 fb—1 6% 2% 16% 19% 45% 50%

standard selection @ 0.2 fb—! 7% <5% — — — —
loose selection @ 4 fb~ 1 = — 9% < 4% 15% < 6%




Fit Performance

@ Background parametrization:

—-bpo | 1 . Do -
(@) = 2 [ bz + 01 b (p22)|

@ Signal + background parametrization:

— 1 (z—p5)®
fsp(@) = fB +p3- Varpa P (*T>

Success rate of the fit

A: Fit to side-bands only

B: Fit to side-bands and control samples

0 b-jet final state > 0 b-jet final state
My 02fb~t 1.0fb~! 40f~! | 02! 10f"! 40!
130 GeV A 60% 61% 83% 0.6% 4% 15%
B 97% 95% 89% 86% 82% 76%
150 GeV A 50% 64% 78% 0.6% 3% 15%
B 88% 94% 87% 86% 81% 79%
200 GeV A 52% 65% 82% 0.5% 5% 18%
B 84% 94% 86% 61% 74% 87%
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