Dünne Sensoren und 3D-Integration für den ATLAS Pixel-Detektor am Super LHC

Philipp Weigell¹ L. Andricek², M. Beimforde¹, A. Macchiolo¹, H.-G. Moser², R. Nisius¹, R.H. Richter²

¹Max-Planck-Institut für Physik ²MPI-Halbleiterlabor München

DPG-Frühjahrstagung Bonn 2010

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Ziele und Herausforderungen

Zukunft von ATLAS und LHC

- Zweistufiges Upgrade: IBL und SLHC
- \approx 10-fache Luminosität: 10³⁵/(cm²s)
- \Rightarrow Strahlenbelastung: $\phi_{eq} \approx 10^{16} \, n_{eq} / cm^2$

Strahlungsschäden an HL-Sensoren

- Akzeptorartige Kristalldefekte erhöhen benötigte Verarmungspannung.
- Andere Defekte bilden 'Fallen' f
 ür freie Ladungstr
 äger
- Bildung zufälliger Elektron-Loch-Paare ⇒ Höhere Leckströme

Ziele und Herausforderungen

Zukunft von ATLAS und LHC

- Zweistufiges Upgrade: IBL und SLHC
- \approx 10-fache Luminosität: 10³⁵/(cm²s)
- \Rightarrow Strahlenbelastung: $\phi_{eq} \approx 10^{16} \, n_{eq} / cm^2$

Strahlungsschäden an HL-Sensoren

- Akzeptorartige Kristalldefekte erhöhen benötigte Verarmungspannung.
- Andere Defekte bilden 'Fallen' für freie Ladungsträger
- Bildung zufälliger Elektron-Loch-Paare ⇒ Höhere Leckströme

Design-Vergleich

Drei neue Technologien

- Dünne Sensoren (Am MPP-HLL entwickelter Prozess)
- SLID: Solid Liquid Inter-Diffusion
- ICV: Inter-Chip-Vias

Vorteile von dünnen Sensoren + ICV-SLID

- Vermutlich größere Signale nach Bestrahlung
- Weniger Vielfachstreuung
- Kompaktere Bauweise "Balkon" zur Signal-Extraktion unnötig
- Vergrößerung der aktiven Fläche
- Vertikale Integration möglich

Dünne Sensoren

Warum dünne Sensoren?

- Geringere Verarmungsspannungen: $V_{\text{depl}} \propto d^2$
- Höhere elektrische Felder im Sensor bei gleicher Spannung erwartet.
- Geringere Strahlungslänge
 - $(250 + 180) \,\mu\text{m} \rightarrow (150 + 50) \,\mu\text{m}$ (Sensor + FE-Chip)
 - $0.49 \% X_0 \rightarrow 0.21 \% X_0$ in Si
 - Verringerte Vielfachstreuung (wichtig direkt am WW-Punkt)

Produktion dünner Sensoren

Produktion und Pläne

#	Wafer	Dicke	P-spray	Bestrahlung
1	p (>2kΩcm)	75	high	SLID + irrad
2	p (>2kΩcm)	75	high	direct irrad
D1	p (>2kΩcm)	75	low	direct irrad
4	p (>2kΩcm)	75	low	SLID + irrad
5	n (360 Ωcm)	75	high	direct irrad
6	n (360 Ωcm)	75	high	direct irrad
7	n (360 Ωcm)	75	low	direct irrad
8	n (360 Ωcm)	75	low	direct irrad
D3	p (>2kΩcm)	150	low	direct irrad
10	p (>2kΩcm)	150	high	SLID + irrad
11	p (>2kΩcm)	150	low	direct irrad
12	p (>2kΩcm)	150	low	SLID + irrad

- Proton-Bestrahlung mit Flüssen bis zu $10^{16} n_{eq}/cm^2$ in Karlsruhe (26 MeV)
- n-in-p-Silizium als Ersatz für n-in-n-Silizium ⇒ Nur eine Waferseite muss strukturiert werden ⇒ Kostensenkung

Charakterisierung der Sensoren

n-in-p Pixel

- Sehr guter Yield: 79/80, kleine Leckströme <10 nA/cm², sehr gutes Durchbruchverhalten V_{break} ≫ V_{depl}
- Wie erwartet zeigen alle Strukturen nach Bestrahlung ein verbessertes Durchbruchverhalten: $V_{\text{break}} \gg V_{\text{depl}}$
- Annealing senkt V_{depl} wieder ab

Charakterisierung der Sensoren

n-in-p Pixel

- Sehr guter Yield: 79/80, kleine Leckströme <10 nA/cm², sehr gutes Durchbruchverhalten V_{break} ≫ V_{depl}
- Wie erwartet zeigen alle Strukturen nach Bestrahlung ein verbessertes Durchbruchverhalten: $V_{\text{break}} \gg V_{\text{depl}}$
- Annealing senkt V_{depl} wieder ab

Charakterisierung der Sensoren

n-in-p Pixel

- Sehr guter Yield: 79/80, kleine Leckströme <10 nA/cm², sehr gutes Durchbruchverhalten V_{break} ≫ V_{depl}
- Wie erwartet zeigen alle Strukturen nach Bestrahlung ein verbessertes Durchbruchverhalten: $V_{\text{break}} \gg V_{\text{depl}}$

6/12

Annealing senkt V_{depl} wieder ab

n-in-p Dioden

CCE Messungen

Messungen direkt nach Bestrahlung: T=-30 °C ($\phi = 10^{15} \text{ n}_{eq}/\text{cm}^2$); T=-40 °C ($\phi = 3 \cdot 10^{15} \text{ n}_{eq}/\text{cm}^2$). Höhere Spannungen technisch nicht möglich (DC-Kopplung!)

- Nach Bestrahlung: Gleiche Signalhöhe wie vor Bestrahlung. Allerdings bei höherer Verarmungsspanung (Trapping!).
- Derzeit: Weitere Messungen für $\phi =$ $(3-10) \cdot 10^{15} n_{eq}/cm^2$
- Fehlerbänder entsprechen 500 e⁻ Unsicherheiten, geschätzt für jeden Punkt.

SLID: Solid Liquid Inter-Diffusion

- Neue Verbindungs-Technologie für Sensoren und Auslesechips
- Weniger Prozesschritte als beim Bump-Bonding
- Verschiedene (insbesondere kleinere) Kontaktgrößen möglich
- Wiederholtes Stapeln möglich (Höherer Schmelzpunkt von Cu₃Sn als von Sn)
- Validierung mittels Daisy-Chains und Vernier-Skalen

SLID-Messungen

Wafer zu Wafer SLID-Verbindung

- SLID-Verbindung zweier kompletter Wafer
- Ineffizienz < 10⁻³. Am Besten in der Wafermitte
- Ausrichtung sehr gut: Abweichung bis auf wenige Ausnahmen < 5 μm

Chip zu Wafer SLID-Verbindung

- SLID-Verbindung mit Chips von 3 Chip-Wafern
- Positionierung ungenügend (Hypothese: Strukturen diverser Geometrien)
- Verbindungen teilweise schlecht (Hypothese: Dickenvariation der drei Wafer ~10 µm)

SLID-Messungen

Wafer zu Wafer SLID-Verbindung

- SLID-Verbindung zweier kompletter Wafer
- Ineffizienz < 10⁻³. Am Besten in der Wafermitte
- Ausrichtung sehr gut: Abweichung bis auf wenige Ausnahmen < 5 µm

Chip zu Wafer SLID-Verbindung

- SLID-Verbindung mit Chips von 3 Chip-Wafern
- Positionierung ungenügend (Hypothese: Strukturen diverser Geometrien)
- Verbindungen teilweise schlecht (Hypothese: Dickenvariation der drei Wafer ${\approx}10\,\mu\text{m})$

Zusammenfassung und Ausblick

- Planare Pixel Sensoren mit aktiver Dicke von 75 µm und 150 µm bereits produziert und getestet.
 - Gute Performanz der FE-I3 kompatiblen Pixel-Sensoren
 - Vielversprechende erste CCE-Messungen
- MPP/HLL Pixel-Sensor-Produktion für IBL-Qualifikation in Vorbereitung

Pläne

- Elektrische Charakterisierung + CCE-Messungen bis 10¹⁶ n_{eq}/cm²
- SLID-Prozess optimieren
- Annealing bei Raumtemperatur über längeren Zeitraum
- Vorbereitung für IBL-Testbeam

BACKUP

CCE Messungen mit Alibava

- CCE Messungen bestrahlter Streifen, Selbe Produktion, (75 und 150) μm, mit ALIBAVA-System und ⁹⁰Sr Quelle.
- Streifendetektoren haben exakt selben Aufbau wie die Pixel (punch-through, biasing, DC-Kopplung). Ausnahme: Länge (7 mm)

Philipp Weigell (MPI für Physik)

CCE Messungen an Pixeln erst nach SLID-Verbindungn von Sensor und FE-I2 (in Vorbereitung)

