Entwicklung hochauflösender Myondetektoren für sLHC

<u>Bernhard Bittner¹</u>, Jörg Dubbert¹, Oliver Kortner¹, Hubert Kroha¹, Robert Richter¹, Federica Legger^{1,2}, Stefanie Adomeit², Otmar Biebel², Albert Engl², Ralf Hertenberger², Felix Rauscher², Andre Zibell²

¹MPI für Physik, München, ² Ludwig-Maximilians-Universität, München

DPG Frühjahrstagung, Bonn, März 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

① Untergrundraten bei normaler LHC und sLHC Luminosität

- Erwartete Probleme
- Onser Ansatz
- ③ Erste Tests mit den 15 mm Rohren
 - Tests in der GIF
 - Der erste Prototyp
 - Tests im hochenergetischen Myonenstrahl
 - Tests in der GIF (Teil II)

4 Zusammenfassung

Der ATLAS Detektor am LHC

Derzeitiges Design der Myondriftrohrkammern

- Gasmischung: $Ar/CO_2 = 93/7$
- Gasverstärkung: 2 · 10⁴
- Max. Driftzeit: pprox 700 ns
- ullet Einzelrohrauflösung: 80 μ m
- Mechanische Genauigkeit:
 20 μm
- Kammerauflösung: 35 μ m

Aktueller Zeitplan für LHC & sLHC

Quelle: Vortrag von Marzio Nessi (LHC Performance Workshop - Chamonix 2010)

Untergrundraten im ATLAS-Myonspektrometer

Der Untergrund besteht hauptsächlich aus Photonen und Neutronen ($\overline{E} \approx 1$ MeV) aus Sekundärreaktionen mit Kalorimetern, Abschirmungen, Strahlröhre und anderen Detektorkomponenten.

Erwartete Raten [Hz/cm²] für nominelle LHC Luminosität ($\mathcal{L} = 10^{34}$ cm⁻²s⁻¹):

Vor allem in der Vorwärtsregion werden sehr hohe Raten erwartet (bis zu 1.7 kHz/cm²)!

B. Bittner (MPI für Physik)

Belegung der Myonkammern bei sLHC-Luminosität

Gute Spurrekonstruktionseffizienz für eine Belegung von 30% oder weniger (grün)

Worst-case scenario: 50x nominal background

Szenarium 1: $\mathcal{L} = 2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- Nur ein kleiner Teil der Kammern muss ersetzt werden (rot)
- Derzeitige Elektronik ausreichend

- Szenarium 2: $\mathcal{L} = 5 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ • Großer Teil der Kammern in Vorwärtsrichtung muss ersetzt werden (rot)
- Die Elektronikkomponenten müssen strahlenhärter werden

B. Bittner (MPI für Physik)

Effizienzprobleme bei hohen Untergrundraten

- Die Totzeit ist von 200 ns bis 790 ns einstellbar.
- Einige Myonentreffer werden durch Untergrundtreffer verdeckt. Bei der Belegungsrate von 21% is die Spurrekonstruktioneffizienz aufgrund der redundanten Messung mit 6 Lagen aber noch bei $\approx 93\%$

Unser Ansatz: Verkleinerung des Rohrdurchmessers

Durch Reduktion des Rohrdurchmessers von **30** auf **15 mm** erreichen wir eine kürzere maximale Driftzeit und eine linearere Orts-Driftzeit-Beziehung

- Maximale Driftzeit um Faktor **3.5** reduziert (700 ns \rightarrow 200 ns)
- Kleinerer Radius resultiert auch in **2x** weniger Untergrundtreffern (weniger Fläche pro Rohr)

 \Rightarrow Gesamtfaktor von 7 (nötig wäre 4-5)

B. Bittner (MPI für Physik)

Gleizeitig wird die Anzahl der Rohrlagen verdoppelt ⇒ bessere Spurrekonstruktion durch mehr Redundanz in den Spurpunkten

Parameter and Erwartungen für 15 mm Rohre

Rohr Ø	15 mm	n 30 mm	
Gas	93:7 Ar/CO ₂	93:7 Ar/CO ₂	
Druck	3 bar	3 bar	
Draht	50 μ m W-Re	50 μ m W-Re	
Rohrwand	0.4 mm Al	0.4 mm Al	
HV	2730	3080	
Max. Driftzeit	200 ns	700 ns	
Gasverstärkung	$2 \cdot 10^4$	$2 \cdot 10^4$	

- Beibehalten von so vielen
 Parametern wie möglich um eine Integration in besethende
 Systeme zu vereinfachen
- Gut bekannte Betriebsparameter mit vielen Referenzmessungen

Erwartete Belegung und Rate für unterschiedliche Untergrundraten

Luminosity	Counting rate	Occupancy	Occupancy
$[cm^{-2}s^{-1}]$	1m tubes [Hz]		
Tube Ø	15 mm	15 mm	30 mm
1×10^{34}	250	2.5%	35%
2×10^{34}	500	5%	60%
5×10^{34}	1250	12.5%	100%

Simulierung der Untergrundstrahlung durch eine sehr starke γ Quelle (~ 570 GBq) Scintilators

- Untergrundraten bis zu 1850 kHz/Rohr
- Härten des Myonspektrums mittels Bleiabsorbers
- Oberste und unterste Lagen der Referenzkammern sind von der Strahlung abgeschirmt ⇒ gute Spurrekonstruktion möglich
- Bestimmung von potentiellen
 Spurtreffern durch eine Vorauswahl mittels Szintillatoren (Vortrag T 56.6 von S. Adomeit, Dienstag Abend)

Beispielereignisse mit und ohne γ -Bestrahlung

Ohne Bestrahlung

Max. Bestrahlung

B. Bittner (MPI für Physik)

Ergebnisse der GIF-Tests – Einzelrohreffizienz

Deutliche Verbesserung des Hochratenverhaltens:

- Effizienz bei $\mathcal{L} = 5 \cdot 10^{34}$ cm⁻²s⁻¹ vergleichbar mit $\mathcal{L} = 1 \cdot 10^{34}$ cm⁻²s⁻¹ und 30 mm Rohren
- Höhere Spurrekonstruktionseffizienz wegen doppelter Redundanz

Entwurf für eine Kammer

Eine Kammer besteht aus zwei Multilagen mit je 8 Lagen 15 mm Rohre. Trapezförmiges Design wegen der angedachten Einbauposition in den ATLAS Myonspektrometer-Endkappen.

Eine erste Kammer soll bereits im Sommer im CERN Myonstrahl getestet werden.

B. Bittner (MPI für Physik)

Myondetektoren für sLHC

Design der Endstopfen und neuen Elektronikkarten

- Seperate Tests der Elektronikkomponenten waren erfolgreich
- Zur Zeit wird ein Test der kompletten Infrastruktur vorbereitet, alle Komponenten sind bereits angefertigt
- Zeitgleich wird die Produktion eines weiteren Prototypen in voller Größe (1 m², mehr als 1000 Rohre) vorbereitet

Konstruktion und Test einer 8-lagigen Kammer mit 96 Rohren

Drahtpositionierungsgenauigkeit

Konstruktion eines 8x12 Rohrbündels

 Nutzung von Standard ATLAS-MDT Elektronik

- Konstuktionsgenauigkeit besser als
 20 μm (Vermessung wie bei Standard ATLAS Myonkammern)
- Die Gitterabstände sind in allen Lagen gleich
- Keine Ausreißer ⇒ sehr homogenes
 Gitter

Tests mit dem 96 Rohrbündel im Myonenstrahl am CERN

- Drehbar gelagerte Kammer zur Untersuchung verschiedener Spurwinkel
- Siliziumstreifen-Detektoren als genaue Referenz
- Referenz-MDT-Kammer f
 ür zus
 ätzliche Spurpunkte und Vergleiche mit dem Pr
 üfling
- Datennahme mit verschiedenen
 Parametern (Diskriminatorschwellen, HV, etc)
- Bestimmung der Ortsauflösung und Spurrekontruktionsgenauigkeit

 \Rightarrow Vortrag von A. Engl (T 69.3, Donnerstag Abend)

GIF-Tests

 Prinzipiell der gleiche Aufbau wie im Frühjahr/Sommer '09, jedoch mit mehr Platz f²r Prüflinge zwischen den Referenzkammern
 ⇒ Möglichkeit die Spurrekonstruktionseffizienz bei hohen Untergrundraten zu testen
 Datennahme und Auswertung laufen noch

. . .

Zusammenfassung

- Nach dem LHC Zeitplan müssen neue Detektortechnologien für das ATLAS-Myonspektrometer bis 2017 einsatzbereit sein ⇒ Entwiklung muss bald abgeschlossen werden
- Ansatz: Driftrohrkammern aus Rohren mit 15 mm Durchmesser
- Hochratentests zeigen eine gute Übereinstimmung mit den Erwartungen
- Die 15 mm Rohre können auch bei den höchsten zu erwartenden Untergrundraten noch in allen Bereichen des ATLAS Myonspektrometers zuverlässig arbeiten
- Vorteile: Dies ist eine etabliertte Technologie und auch auf große Flächen anwendbar.
- ⇒ Ein Kandidat für das ATLAS-Myonspektrometer Upgrade

Zusammenfassung

- Nach dem LHC Zeitplan müssen neue Detektortechnologien für das ATLAS-Myonspektrometer bis 2017 einsatzbereit sein ⇒ Entwiklung muss bald abgeschlossen werden
- Ansatz: Driftrohrkammern aus Rohren mit 15 mm Durchmesser
- Hochratentests zeigen eine gute Übereinstimmung mit den Erwartungen
- Die 15 mm Rohre können auch bei den höchsten zu erwartenden Untergrundraten noch in allen Bereichen des ATLAS Myonspektrometers zuverlässig arbeiten
- Vorteile: Dies ist eine etabliertte Technologie und auch auf große Flächen anwendbar.
- ⇒ Ein Kandidat für das ATLAS-Myonspektrometer Upgrade

Herzlichen Dank!

Backup

Prototyp

Anschlüsse über Kabel und Schläuche da noch keine neuen Elektronik- und Gaskomponenten zur Verfügung standen

B. Bittner (MPI für Physik)

Myondetektoren für sLHC

Trefferverteilung mit und ohne γ Bestrahlung

 Oberste und unterste Lage der Referenzkammern sind abgeschirmt ⇒ gute Spurrekontruktionsgenauigkeit

- Mittlere Lagen sind nicht abgeschirmt ⇒ schlechte Effizienz in den 30 mm Rohren und echte Myuonentreffer sind schwer zu finden
- Die niedrigere Belegung in der Testkammer (am nächsten an der Quelle) ist deutlich sichtbar!