Softwarekompensation für hadronische Schauer mit den CALICE-Kalorimetern

Katja Seidel

Max-Planck-Institut für Physik

DPG Frühjahrstagung 2010 18.03.2010

- 1 Softwarekompensation
- 2 Schauerrekonstruktion
- 3 Wichtung durch Energiedichte
- 4 Neuronales Netz
- 5 Zusammenfassung

Hadronische Schauer:

- Elektromagnetische, sichtbare hadronische und nicht sichtbare / detektierbare Komponenten
- Große Fluktuationen der elektromagetischen und hadronischen Anteile von Ereignis zu Ereignis
- Bei gleicher Energie höheres Detektorsignal für elektromagnetischen Schaueranteil: $\frac{e}{\pi} > 1$
 - Softwarekompensation um $\frac{e}{\pi} = 1$ zu erreichen

Softwarekompensation durch zwei Analysen:

- verschiedene Schauervariablen und ein neuronales Netz
- Energiedichte der Schauer um Anteile der had. und elektrm. abzuschätzen. Stärkere Wichtung von Schauern mit großer hadronischer Komponente.

Auf Schauerrekonstruktion basierende Softwarekompensation

Beide Analysen behandeln nur den Schauer als ganzes! Keine Subschaueranalyse!

- Schauerrekonstruktion im analogen hadronischen Kalorimeter (AHCAL) und Tail-Catcher Clustering von Schauern, die im AHCAL starten
- 2 Berechnung der Schauervariablen der Teststrahl-Daten und der Simulation
- 3 Analyse entwickelt mit Simulation verschiedener hadronischer Modelle: FTF_BIC und QGSP_BERT
- Anwendung der Gewichte bzw. des trainierten Neuronalen Netzes auf Teststrahldaten
- \Rightarrow Globale Methode
- \Rightarrow Vorteile: Ermittlung durch Simulation; Test der Simulation

Muon Trigger

Hadronische Schauer mit hoher Energiedichte ρ \Rightarrow hohe rekonstruierte Energie

Hadronische Schauer mit hoher Energiedichte ρ \Rightarrow hohe rekonstruierte Energie

$$E_{rec}[GeV] = \sum_{hit} E_{hit}[MIP] \cdot \omega(\rho, E)$$
$$= E_{rec}[MIP] \cdot \omega(\rho, E)$$

Hadronische Schauer mit hoher Energiedichte ρ \Rightarrow hohe rekonstruierte Energie

$$E_{rec}[GeV] = \sum_{hit} E_{hit}[MIP] \cdot \omega(\rho, E)$$
$$= E_{rec}[MIP] \cdot \omega(\rho, E)$$

Individuelle Gewichte durch Minimierung der Funktion $\chi^2 = E_{rec} \cdot \omega - E_{beam}$

Hadronische Schauer mit hoher Energiedichte ρ \Rightarrow hohe rekonstruierte Energie

$$E_{rec}[GeV] = \sum_{hit} E_{hit}[MIP] \cdot \omega(\rho, E)$$
$$= E_{rec}[MIP] \cdot \omega(\rho, E)$$

- Individuelle Gewichte durch Minimierung der Funktion $\chi^2 = E_{rec} \cdot \omega E_{beam}$
- Parametrisierung der individuellen Gewichte durch $\omega = a(E) \cdot \rho + b(E)$

Hadronische Schauer mit hoher Energiedichte ρ \Rightarrow hohe rekonstruierte Energie

$$E_{rec}[GeV] = \sum_{hit} E_{hit}[MIP] \cdot \omega(\rho, E)$$
$$= E_{rec}[MIP] \cdot \omega(\rho, E)$$

- Individuelle Gewichte durch Minimierung der Funktion $\chi^2 = E_{rec} \cdot \omega E_{beam}$
- Parametrisierung der individuellen Gewichte durch $\omega = a(E) \cdot \rho + b(E)$
- Parametrisierung der Energieabhängigkeit durch Funktionen für a(E) und b(E), $E = E_{rec}$

\Rightarrow Bestimmung der Gewichte somit Teststrahldaten unabhängig!

Ergebnisse mit der Parametrisierung

Energieauflösung:

- Ohne Gewichtung: $\frac{\sigma}{E} = \frac{64.8 \pm 0.2 \,\%}{\sqrt{E}} \oplus 0.0 \pm 0.8 \,\% \oplus \frac{0.0 \pm 0.2}{E}$
- Stochasticher Term: FTF_BIC: 53.5 %, QGSP_BERT:51.1 %
- Konstanter Term: FTF_BIC: 2.2%, QGSP_BERT:2.9%
- \blacksquare Vergleichbare Verbesserung der Energieauflösung \rightarrow ca. 15 %

K. Seidel (MPP)

Linearität:

TMVA - Toolkit for Multivariate Data Analysis with ROOT Input:

- Training: Monte Carlo Ereignisse mit kontinuierlicher Energie
- Zwei hadronische Modelle: QGSP_BERT und FTF_BIC von GEANT4
- 6 Eingangsvariablen
- Targetwert: Strahlenergie
- Ausgangsneuron: rekonstruierte Energie
- Anwendung des trainierten neuronalen Netzes auf Teststrahldaten

Ergebnisse mit dem Neuronalen Netz

Energieauflösung:

- Ohne Gewichtung: $\frac{\sigma}{E} = \frac{64.8 \pm 0.2 \,\%}{\sqrt{E}} \oplus 0.0 \pm 0.8 \,\% \oplus \frac{0.0 \pm 0.2}{E}$
- Stochasticher Term: FTF_BIC: 43.1 %, QGSP_BERT:41.5 %
- Konstanter Term: FTF_BIC: 2.8%, QGSP_BERT:3.6%
- Vergleichbare Verbesserung der Energieauflösung \rightarrow ca. 23 %

K. Seidel (MPP)

Ergebnisse mit dem Neuronalen Netz

Linearität:

Zusammenfassung

- Softwarekompensation f
 ür das analoge hadronische Kalorimeter und den Tail-Catcher von CALICE f
 ür hadronische Schauer
- Verbesserung der Energieauflösung von ca. 25 % durch Neuronales Netz
- Verbesserung der Energieauflösung von 18 % durch Parametrisierung von Gewichten basierend auf der Energiedichte der Schauer

Ausblick:

Anwendung einer
 Softwarekompensationsmethode auf
 Simulationen des gesamten International
 Large Detektors (ILD) für den ILC

Backup slides

Gain of Energy Resolution with NN

Gain of Energy Resolution with Weighting Technqiue

