

Power Supplies for Belle II PXD General remarks and grounding

P. Vazquez, J. Visniakov

PS location

• Option 1:

- distribution, control, monitoring custom made board on the electronics hut. Based on DCDC and Digital-to-Analog converters, mixed signal FPGA
- Local regulation on DHH (for lines with I>100mA?) hardware settings?, monitoring?

Option 2:

 Same as 1 but using a commercial system (CAEN, WIENER... does it exist?)

• Option 3:

 Distribution, control, monitoring, regulation on custom made board on the DOCK (water cooling, limited space, radiation tolerant components?)

Voltage distribution

2 Groups	7 Groups	Name	Туре	Voltage, V	Current, mA	Return current, mA
Analog	DCD Ana	VDDA	Analog supply	1,8	2300	
		RefIn	Analog ref	1,1	100	
		AmpLow	Analog Amp	0,35	1500	
		AGND	Analog ground	0		3900
Digital	DCD Dig	VDDD	Digital supply	1,8	800	
		DGND	Common digital ground	0		800
	SW Dig	VDDS	Digital supply	3,3	4	
		DGND	Digital ground	0		8
	•	VJTAG	JTAG supply	1,8	4	
	SW Ana	Vsource	Source	7	100	
Analog		VCCG	Common clear gate	7	0	
		Vclear_on	Clear on	17	30	
		Vclear_off	Clear off	8	30	
		Vgate_on	Gate on	4	30	
		Vgate_off	Gate off	13	30	
						220
Digital	DHP	VDDIO	DHP IO rail	1,8	100	
		VDDC	DHP Core	1,2	500	
		DGND	Digital ground	0		600
Analog	DEPFET	Vbulk	Bulk	17	0	
		Vguard	Guard ring	?	0	
		Vbias	Back plane	-20	0	

Rad-hard regulator

RHFL4913A - Rad-hard adjustable positive voltage regulator

Decoupling capacitor

Features

- 3 A low dropout voltage
- Embedded overtemperature and overcurrent protection
- Adjustable overcurrent limitation
- Output overload monitoring/signalling
- Adjustable output voltage
- Inhibit (ON/OFF) TTL-compatible control
- Programmable output short-circuit current
- Remote sensing operation
- Rad-hard: guaranteed up to 300 krad Mil Std 883E Method 1019.6 high dose rate and 0.01 rad/s in ELDRS conditions
- Heavy ion, SEL immune

Symbol	Parameter	Value	Unit
V _I	DC input voltage, V _I - V _{GROUND}	12	٧
V_{O}	DC output voltage range	1.23 to 9	V
I _o	Output current, RHFL4913KPA	2	А
I _o	Output current, RHFL4913SCA	3	А
P_{D}	T _C = 25 °C power dissipation	15	W

3 inputs (AmpLow, Refln, DHPcore) are below this range

	Input Supply	V ₁ DUT R2 REMOTE LOAD RW1 RW2
--	-----------------	---

Grounding

- (a) All floating voltage references in a half-module should be connected togeather in a single common point => the cooling block
- How to connect both cooling blocks togheather?
 - (b) through few wide (~cm?) straps ☺
 - low inductance
 - (c) through several narrow lines on the module + wire bondings 🕾
 - high inductance
 - no space left on module metal layers

Grounding

Electrical connections to other detectors / systems well under control to avoid grounding loops as in example the cooling pipes shared with SVD

Grounding

 Pads on the backside of the module to connect references togeather on the cooling

Decoupling capacitors

Decoupling capacitors on the top of the module

