

Module Link

Hans Krüger, University of Bonn

Overview

- Requirements & Constraints
 - mechanical, electrical
- Flex kapton design
 - layer stackup
 - TML design
- Signal integrity
 - schematic simulation
- Prototype layouts

DEPFET PXD – Backend Electronic

- flex cable connect modules (power, data, timing)
- patch panel at end of kapton flex
 - data links \rightarrow twisted pair cables
 - power lines \rightarrow larger cross section cables
 - CML repeater/equalizer for Gbit links ?
- data handling hybrid (DHH)

universität**bon**

Mechanical constraints

- no connector on module end
- max flex width: 6.5 mm
- quite complex outer shape

• Digital signals between DHH and DEPFET module (DHP)

Signal name	Туре	Description	Comment
GCK	LVDS in	system clock = 1/8 rowClk (~100 MHz)	generated from RF clock F0 adjusted by additional factor on the DHH
FCK	LVDS in	99.2 kHz frame clock	synchronous to the beam gap
TRG	LVDS in	trigger	10-30 kHz
TMS	LVDS in	JTAG mode select	
TCK	LVDS in	JTAG clock	
TDI	LVDS in	JTAG data in	
TDO	LVDS out	JTAG data out	
RST	LVDS in	reset	for all chips? polarity?!
DO[3:0]	CML out	DHP data out 1.25 Gbps	one per chip

• Power lines

- DCD (3x analog + digital)
- DHP (digital IO + core)
- Switcher (4x analog + digital)
- DEPFET bias (5x)

Power / bias lines

			voltage	current					width	voltage
	name	type	[M]	[mA]	comment	diff.	thin	thick	[mm]	drop [V]
power supplies	VDDA	DCD analog	1,8	2300	sense line		1	6	3,48	0,35
DCD	VDDD	DCD digital	1,8	800	sense line				1,21	0,35
	REFIN	DCD analog ref	1,1	100	sense line		1	2	0,15	0,35
	DGND	common digital ground	0	800	common					
	AGND	analog ground	0	2300	sense line		1	6	3,48	0,35
	AMPLOW		0,35	1500	sense line		1	4	2,27	0,35
DHP	VDDIO	DHP IO rail	1,8	100	sense line		1	2	0,15	0,35
	VDDC	DHP core	1,2	500	sense line		1	5	0,76	0,35
	DGND	digital ground	0	600	common					
SWITCHER	VDDS	digital supply	33	4				1	0.01	0.35
	DGND	digital ground	0	4	common				0,01	0,00
	VJTAG	JTAG IO rail	1.8	4	common					
			.,							
common	VDDIO	common IO rail + DCD digital	I 1,8	904	sense line		1	4	1,37	0,35
	DGND	digital ground	0	1404	sense line		1	6	2,12	0,35
hina unlingua	Valaar on	alaar an	. 17	20			1			
bias voltages	Veleer_off	clear off	~17	20						
	Voete_on	clear on	~0	30			1			
	Vgate_off	gate off	-4	30			4			
	Vgate_on	gate on	~13	100				4		
	Voor	common clear gate	~7	100			1	'		
	Veeg	bulk	~17	0			1			
	Vauerd	aurad ring (edge)	~17	0			1			
	Vguaru	backplano	-20	0			4			
	volas	Dackplane	-20	0	signal pipe:	24	17	37		
		nowar currant		1056	total cum:	24		70	15.00	
		powercurrent		4900	total sulli.			10	15,00	

- min. copper width (17 μ m copper) for Δ U < 0.4 V (10A, 50 cm length): 15 mm
- total flex width (including digital, bias and sense lines): ~24 mm → 3 layer flex, 6 mm wide
- still some safety factor if 35µm instead of 18µm copper for power layers would be used

Proposed layer stackup

Transmission line calculations

universität**bonn**

- differential TML variants
 - $d = d1 = d2 = [25, 50, 75] \mu m$
 - **-** ε **=** 3.5
 - s = 100 μ m, w = [60, 80 100] μ m, t = 18 μ m
- target: diff. impedance $Z_0 = 100 \Omega$
 - industry standard termination for differential signalling
 - also DHP output driver has 50 Ω single-ended output impedance (could be adjusted to smaller values in future chip versions)
- how to achieve this
 - thick dielectric ightarrow overall thickness and cable flexibility
 - thin wires ightarrow yield issues, resistive loss
 - − micro-strip line gives higher Z_0 , but becomes strip line when touching metal parts → impedance discontinuities
- need 50 μm lines strip lines (d = 75 μm) for Z_0 = 100 Ω
 - but min. width = 100 μm, smaller width possible but not recommended (yield, accuracy, resistive loss)

Differential Transmission Line Impedance

 \rightarrow base line: 100 µm width strip line with 75 µm dielectric (Z₀ = 74.5 Ω)

Signal integrity simulation basics

- Simulation tool (HyperLynx, Mentor Graphics)
 - schematic based: TML model from layer stackup
 - layout based: TML model from imported PCB layout
- TML implementation
 - dielectric layer thickness d1 = d2 = 75 μ m
 - dielectric constant ϵ = 3.5
 - spacing 100 μm line width 100 μm
 - signal layer thickness 18 μm
 - \Rightarrow Z₀ s.e. = 40.1 Ω, Z₀ diff = 75.4 Ω
- simplified driver model
 - single ended output impedance: 50 Ω + 1 pF parallel and 2 nH series parasitics
 - rise time: 50 ps (ideal ramp)
 - output levels: 0.8 1.2 V

Layer Stackup, Design: TML calculation.ffs. HyperLynx LineSim V8.0

Total thickness = 254 um

Signal integrity simulation basics (contd.)

time-domain reflectometry (TDR)

- input: ideal voltage step
- output: reflected signal measured at the driver
- resolves spatial resolution of line impedance
- optimize layout: find & resolve impedance discontinuities (vias, connectors...)

eye diagram

- input: pseudo random bit sequence (PRBS) or 8b/10b patterns
- output: overlay of waveforms at the receiver triggered with the bit clock
- measure eye opening
 - vertical: minimum differential receiver input voltage
 - horizontal: maximum timing jitter (deterministic + random)
- ightarrow estimate bit error rate

Signal integrity simulation – advanced design

- real design more complicated
 - DHP driver (ESD, pad, bump bond → generate IBIS model, tbd.)
 - silicon substrate
 - wire bond to flex
 - flex (√)
 - via (✓)
 - receiver ICs (✓, IBIS models from vendor)

work in progress:

- define simulation model for DHP CML driver
- layer stackup for routing on silicon substrate (2 or 3 metal layers)
- simulate different receiver components
 - repeater ICs
 - TWP or coax cables (for passive patch panel option)
- board level simulation
 - import flex design and re-simulate
 - will be important for designs with complex flex outline

- simulations are good but measurements are better...
- what do we want to test & measure?
 - 1. line impedance (process tolerance), attenuation
 - 2. repeater performance (max. cable length, radiation tolerance)
 - 3. flex attachment to the substrate (wire bonding & gluing)
 - 4. data transmission with DHP 0.1
- flex designs variants (20 30 cm)
 - A) differential line pairs with variations line width & spacing, both sides with WB balcony
 - B) flex with rigid PCB on one side (patch panel) comprising supporting different commercial board equalizer chips (repeater) and different connectors (SMA, RJ-45...)
 - C) same as B) but with one repeater only plus external connectors for support of all DHP 0.1 signals + power \rightarrow DHP 0.1 test system

Prototype flex designs variants

universität**bon**

A) diff. TML pairs with line width / spacing variations, WB balcony on both ends

B) diff. TML pairs, patch panel on one side with different board equalizer ICs (repeaters) + connectors

similar to B) but width different patch panel & flex layout for DHP 0.1 test system C)

CLKs, JTAG

- design rules (for 18µm copper):
 - 100μm line width & spacing (80μ line width?)
 - 200µm/400µm via hole/outer ring diameter
 - dielectric constant: 3.4 3.6 for all isolation layers
- 75µm dielectric above and below the (inner) signal layer
- bottom layer "upside-down" for glue attach area

Summary

- (initial) definition of flex design parameters
 - power & signal requirements
 - layer stackup
 - TML parameter
- started signal integrity analysis
- design of prototype flex structures ongoing (production planned for end of March)
 - high speed link test bench: DSA, BERT
- did not touch:
 - power issues
 - connection from patch panel to DHH
- other groups (URL, TUM...) are welcome to join in for the final design

backup

Board equalizer

universität**bonn**

- basic operation principle: compensate low pass characteristic of TML with matched high pass filter at input of the receiver (active filter)
 - fixed high frequency boost or programmable or adaptive → compare input frequency spectrum with ideal (white) spectrum and adjust filter coefficients accordingly
 - alternative: add HF boost at driver output (pre-emphasis)

DIFFERENTIAL EQUALIZER INPUT SIGNAL (TOP) AND OUTPUT SIGNAL (BOTTOM) AT 2.125 GBPS USING A K28.5 PATTERN

Lossy TML

• differential strip line

dielectric thickness : 75 μm dielectric constant: 3.5 spacing: 100 μm, width: 100 μm metal thickness: 18 μm length: 40 cm

• impedance and loss

```
\begin{split} & \mathsf{Z}_0 = 40.2 \ \Omega \\ & \mathsf{DC} \ \text{resistance} \ \mathsf{R}_{\mathsf{DC}} = 3.8 \ \Omega \\ & \text{effective resistance} \ @ \ 1 \ \mathsf{GHz} \ \mathsf{R}_{\mathsf{eff}} = 24 \ \Omega \\ & \text{attenuation} \ 20 \ \mathsf{log} \ (\mathsf{Z}_0/(\mathsf{Z}_0+\mathsf{R}_{\mathsf{eff}})) = 4\mathsf{dB} \end{split}
```


TML impedances: flex kapton and Si substrate

micro-strip line (no top metal layer), 18 μm copper								
line width	spacing	dielectric	Z0 se.	Z0 diff				
60	100	25	39,2	74,0				
80	100	25	33,6	63,7				
100	100	25	29,5	56,0				
60	100	50	56,0	96,9				
80	100	50	49,6	86,6				
100	100	50	44,7	78,6				
60	100	75	67,0	107,4				
80	100	75	60,4	97,7				
100	100	75	55,1	90,1				
strip line, 1								
line width	spacing	dielectric	Z0 se.	Z0 diff				
60	100	25	25,7	51,2				
80	100	25	21,3	42,6				
100	100	25	18,3	36,4				
60	100	50	40,7	78,9				
80	100	50	35,0	68,2				
100	100	50	30,7	60,0				
60	100	75	51,1	94,6				
80	100	75	44,9	83,8				
-								

micro-strip line on silicon substrate, 1 metal layer, 1µm Al								
lin	ne width	spacing	dielectric	Z0 se.	Z0 diff			
	5	5	0,2	477	92,5			
	3	5	0,2	495	107			
micro-strip line on silicon substrate, 2 metal layers, no passivation on top								
lin	ne width	spacing	dielectric	Z0 se.	Z0 diff			
	5	5	0,2	6,9	13,8	no passivation		
	5	5	1	26,1	50,5	no passivation		
	5	5	1	23,9	45,8	1 µ passivation		

bulk resistivity [Ohm/m]

- Cu 1.724 10⁻⁸
- Al 2.863 10⁻⁸

Ag 1.63 10⁻⁸

Au 2.72 10⁻⁸

Zn 11.5 10⁻⁸

H. Krüger, March 8, 2010

High speed signalling test equipment

- 20 GHz Sampling Oscilloscope (DSA 8200)
 - high speed data links characterization
 - time domain reflectometry (TDR)
 - eye diagram analysis
- 3.35 GHz Pattern Generator (Agilent 81134A)
 - real time signal measurements

- FPGA based bit error rate tester
 - ML-505 board (Virtex5LX110T)

