Konzepte für Experimente an zukünftigen Hadroncollidern I

PD Dr. Oliver Kortner

11.01.2021

Dotierte Halbleiter

- In reinen Halbleitern ist die Anzahl der freien Elektronen gleich der Anzahl der Löcher.
- In dotierten Halbleitern kann es mehr Elektronen als Löcher und umgekehrt geben.

Dotierung von Silizium mit pentavalenten Atomen

Pentavalente Atome: Arsen, Phosphor, Antimon.

⇒ Erhöhte Leitfähigkeit durch Überschusselektronen, die sehr leicht thermisch vom Donatorniveau ins Leitungsband angeregt werden können.

Nomenklatur: n-Typ-Halbleiter.

Haupladungsträger im n-Typ-Halbleiter: Elektronen.

Dotierung von Silizium mit trivalenten Atomen

Trivalente Atome: Gallium, Bor, Indium.

⇒ Erhöhte Leitfähigkeit durch Überschusslöcher, die entstehen, wenn Elektronen aus dem Valenzband ins Akzeptorniveau angehoben werden.

Nomenklatur: p-Typ-Halbleiter.

Haupladungsträger im p-Typ-Halbleiter: Löcher.

Ionisierendes Teilchen

Um die Bildung einer Diode am ohmschen Kontakt zu verhindern, deren Verarmungszone sich weit in den Halbleiter erstreckt, verwendet man an den Kontaktflächen hochdotierte Lagen.

Aufgaben eines Innendetektors

- Bestimmung der Ladung q und des Impulses \vec{p} eines geladenen Teilchens.
- Bestimmung des Ursprungspunktes des Teilchens.

Grundstruktur eines Innendetektors

Parameter der rekonstruierten Spur

- Krümmungsrichtung \rightarrow sgn(q).
- Stärke der Krümmung $\rightarrow p$.
- Richtung in der Nähe der Strahlachse $\rightarrow \vec{p}/p$.
- Abstand der Spur von der Strahlachse → Ursprungspunkt des Teilchens.

Impulsauflösung eines Innendetektors

Zur Erinnerung:

- σ : Ortsaulösung einer einzelnen Messebene.
- *B*: Magnetfeldstärke im Innendetektor.
- *L*: Radius des Innendetektors.
- n: Anzahl der (äquidistanten) Messebenen.

Nomenklatur

- d_0 : Transversaler Stoßparameter.
- z_0 : Longitudinaler Stoßparameter.

Konventionen

 d_0 und z_0 werden entweder auf den mittleren Kollisionspunkt oder den tatsächlichen Primärvertex bezogen.

Anforderungen an die innersten Detektorebenen für die $\mathit{d}_{0}\text{-}$ und $\mathit{z}_{0}\text{-}\text{Messung}$

- Vereinfachende Annahmen
 - Betrachte z_0 -Messung.
 - Spuren nahe (0,0,0) gerade.
 - Zwei Detektorebenen bei r_1 und r_2 mit Ortsauflösungen σ_1 und σ_2 .
- z₀-Auflösung

$$\sigma_{z_0} = \frac{\sqrt{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}}{|r_2 - r_1|} \oplus \sigma_{Vielfachstreuung}.$$

⇒ Dünne Detektorebenen nahe an der Strahlachse mit hoher Ortsauflösung zur Maximierung von σ_{z_0} .

Innendetektor: Strahlungsniveaus in der ersten Pixeldetektorlage (r = 3.7 cm)

	HL-LHC (3 ab^{-1})	FCC, Phase 1	FCC, Phase II
1 MeV-neq-Fluss [cm ⁻²]	$1.5 \cdot 10^{16}$	$3 \cdot 10^{16}$	$3 \cdot 10^{17}$
Dosis [MGy]	4.8	9	90

⇒ Halbleiterdetektoren für HL-LHC auch für die ersten Phase des FCC geeignet.Entwicklung noch strahlenhärterer Detektoren für die zweite Phase des FCC nötig.

Die hohen Flüsse geladener und neutraler Teilchen im Innendetektor führen zu Schäden an den Halbleiterdetektoren.

Zwei Mechanismen

 Schädigung der Oberfläche und der Grenzflächen von Halbleiterdetektoren und ihrer Auslesechips durch ionisierende Teilchenstrahlung.

Da Ionisierung in Halbleiter ein reversibler Prozess ist, keine bleibenden Schädigungen im Kristall.

 Stöße an den Atomen des Kristallgitters können zu Atomversetzungen und anderen Beschädigungen des Kristallgitters führen.

Konvention

Die Substratschädigung durch Stöße an den Atomkernen wird üblicherweise auf die Schädigungswirkung von Neutronen mit 1 MeV Energie umgerechnet.

Wiederholung: Substratschädigung

 Die Stöße an Gitteratome können diese versetzen, wodurch Leerstellen und Atome auf Zwischengitterplätzen als primäre Punktdefekte enstehen.

- Die meisten primären Punktdefekte sind instabil und verschwinden durch Rekombination.
- Wegen der Beweglichkeit der primären Punktdefekte können diese mit vorhandenen Fremdatomen stabile Defektkomplexe bilden.

Typeninversion durch Akzeptor- und Donatorzentren

Beim LHC Typeninversion bereits nach wenigen Jahren Betriebszeit.

⇒ Zeitliche Änderung des Wertes der benötigten Verarmungsspannung.

Nach sehr langer Betriebsdauer nur noch teilweise Verarmung des Detektor möglich, was zu einem Signalhöhenverlust führt.

Wiederholung: Auswirkungen der Substratschädigung

Erzeugung von Generationsrekombinationszentren

- Störstellenniveaus in der Mitte der Bandlücke wirken als Generations- und Rekombinationszentren.
- Generationszentren erhöhen den Detektorleckstrom.
- ⇒ Erhöhung des Detektorrauschens und der Detektortemperatur.
 - Gefahr der Zerstörung des Detektors durch eine Kettenreaktion von leckstrombedingter Temperaturerhöhung und temperaturbedingter Leckstromerhöhung.

Erzeugung von Einfangzentren

Störstellenniveaus.

Einfang von Elektronen und Löcher in

⇒ Sinkende Lebensdauern und freie Weglänge

17

Valenzband

der Ladungsträger. → Signalverlust, falls er Einfang länger als die Signalentstehungszeit ist.

Wiederholung: Steigerung der Strahlenhärte

Kühlung der Sensoren

- Substratschädigungen temperaturabhängig.
- ⇒ Schädigungen können bei Erwärmung des Kristall behoben werden. Aber es können bei zu langer Erwärmung bisher unerhebliche Fehlstellen zu störenden Zentren werden.
- \Rightarrow Unterdrückung des zweiten Prozesses durch Kühlung der Sensoren auf ${\sim}{\text{-}10^{o}\text{C}}.$

(a) n⁻-Substratdotierung vor der Bestrahlung.

(b) p⁻-Subatratdotierung nach der Bestrahlung.

 n^+ -in-n- oder n^+ -in-p-Sensoren •

- Nach Typeninversion vollständige Verarmung nicht immer möglich.
- ⇒ n⁺-in-n- oder n⁺-in-p-Sensoren, damit nach Typeninversion die n⁺p-Grenzschicht auf der Seite der Ausleseelektrode liegt.

Wiederholung: Steigerung der Strahlenhärte

Sauerstoffanreicherung des Siliziumsubstrats

• Unterdrückung oder Verhinderung der Typeninversion durch Sauerstoffanreicherung des Siliziumsubstrats.

Dünne Sensoren oder 3D-Pixelsensoren

- Ziel: Verringerung der Driftwege und Beschleunigung der Ladungssammlung, um Einfangeffekten entgegenzuwirken.
- Zwei Möglichkeiten: Dünne planare Sensoren oder
 3D-Pixelsensoren mit säulenförmigen Elektroden.

Grundstruktur eines Teilchendetektors am Hadroncollider

Elektron-Photon-Schauer

- Nach der Strecke $n \cdot X_0$: 2^n Teilchen mit Energie $E_n \approx \frac{E_{\gamma}}{2^n}$.
- Ende der Kaskade (des Schauers), wenn $E_n = E_k$: $n = \frac{\ln \frac{E_{\gamma}}{E_k}}{\ln 2}$.
- Länge des Schauers: $n \cdot X_0 = X_0 \cdot \frac{\ln \frac{E_{\gamma}}{E_k}}{\ln 2}$.

Beispiel

- $E_{\gamma} = 100$ GeV.
- Material: Eisen, d.h. $X_0 \approx 2$ cm, $E_k \approx 20$ MeV.
- \Rightarrow n = 12, d.h. ~ 4000 Teilchen. Schauerlänge: $L_{longitudinal} \approx 24$ cm.

Die volle Behandlung mit massiven Elektronen und Positronen ergibt folgendes Ergebnis.

• Die transversale Ausdehnung des Schauers L_{\perp} ist unabhängig von $E_{\gamma/e^{\pm}}.$

•
$$L_{T,Fe} = 4 \cdot 1, 8 \text{ cm} \cdot \frac{21,2\text{MeV}}{30,2\text{MeV}} \approx 5 \text{ cm}.$$

- Für elektromagnetische ist also eine kleine, von $E_{\gamma,e^{\pm}}$ unabhängige transversale Ausdehnung charakteristisch.
- Die Anzahl der erzeugten Schauerteilchen ist das Maß für E_{γ,e^\pm} und ist proportional zu $E_{\gamma,e^\pm}.$

Hadronenschauer

Qualitativ ähnliches Verhalten wie bei elektromagnetischen Schauern:

- Schauerlänge proportional zu $\lambda_A \approx 35~{\rm g}\,{\rm cm}^{-2} \frac{A^{1/3}}{\rho} \gg X_0.$
- Transversale Ausdehnung unabhängig von der Energie des primären Hadrons: λ_A .
- Allerdings viel stärkere Schwankungen der Schauergröße als beie elektromagnetischen Schauern.

Schauerkomponenten ud Schauerfluktuationen

Beiträge zur in einem Materialblock eingebrachten Energie E_{dep}

$$E_{dep} = (f_{em} + \underbrace{f_{ion} + f_n + f_\gamma + f_B}_{=:f_h})E_{dep}$$

- f_{em} . Anteil der von den Photonen aus den π^0 -Zerfällen deponierten Energie. Da in der hadronischen Kaskade immer wieder neutrale Pionen entstehen, nimmt f_{em} mit der Teilchenmultiplizität in der Kaskade, also mit der Energie des einlaufenden Hadrons zu.
- f_{ion} . Anteil der von den geladenen Teilchen im Schauer durch Ionisierung deponierten Energie.
 - f_n . Anteil der von Neutronen durch elastische Stöße oder Kernreaktionen deponierten Energie.
 - f_{γ} . Anteil der von Photonen deponierten Energie, die in Kernreaktionen entstanden sind. $E_{\gamma} \sim \text{keV}...\text{MeV} \Rightarrow \text{Energieübertrag}$ durch Comptonstreuung oder Photoeffekt. Dieser Beitrag kann mit großer Verzögerung $\gtrsim \mu$ s auftreten.
 - f_B . Die Bindungsenergie, die zum Aufbrechen eines Kerns benötigt wird, wird nicht gemessen und trägt nicht zum Kalorimetersignal bei. Ähnlich ist dies bei Neutrinos, die in f_B üblicherweise berücksichtigt werden.

Beiträge zur in einem Materialblock eingebrachten Energie E_{dep}

$$E_{dep} = (f_{em} + \underbrace{f_{ion} + f_n + f_\gamma + f_B}_{=:f_h})E_{dep}$$

- f_{em} schwankt in einem hadronischen Schauer sehr stark zwischen 0 und 1, wenn in den ersten Wechselwirkungen gar keine oder nur neutrale Pionen erzeugt werden.
- Die hadronische Komponente ist in ihrer Zusammensetzung weitgehend unabhängig von der Art des einlaufenden Teilchens und derene Energie.

Begriffseinführung

Passives Medium: Material, in dem sich der Schauer entwickelt.

<u>Aktives</u> Medium: Material, in dem elektronisch registrierbare Signale der Schauerteilchen entstehen.

Zwei Kalorimetertypen

- <u>Homogene Kalorimeter</u>, bei denen das aktive Material auch die Rolle des passiven Materials erfüllt.
- Inhomogene Kalorimeter, auch Samplingkalorimeter genannt, bei denen sich aktives und passives Material abwechseln.

Hadronkalorimeter werden als inhomogene Kalorimeter ausgeführt, um ihre Größe zu begrenzen. Bei elektromagnetischen Kalorimetern kommen beide Typen zum Einsatz.

- Elektromagnetische Kalorimeter werden longitudinal segmentiert, um die longitudinale Form von Schauern messen zu können. Dann kann man Schauer, die von Elektronen herrühren, von Schauern unterscheiden, die von Pionen erzeugt werden und länger als Elektronenschauer sind.
- Auch bei Hadronkalorimetern ist die longitudinale Segmentierung wichtig, um aus der Form der Schauer auf die unterschiedlichen Schauerkomponenten schließen zu können.

Tailcatcher

Hierunter versteht man eine longitudinale Erweiterung eines Kalorimeters, mit der man recht grob die Schwänze der Schauer vermisst, um so die Nachweisverluste klein zu halten.

Presampler

Hierunter versteht man eine dem elektromagnetischen Kalorimeter vorgeschaltete Kalorimeterebene, die es gestattet festzustellen, ob ein von einem Photon ausgelöster Schauer bereits vor dem Kalorimeter entstanden ist.

Laterale Struktur

Lateral müssen Kalorimeter so fein segmentiert sein, dass man benachbarte Schauer voneinander trennen kann. D.h. der Moliére- radius bzw. die nukleare Wechselwirkungslänge bestimmt die benötigte Segmentierung.

Energieauflösung

- Die Energiemessung in einem Kalorimeter besteht im Nachweis der Schauerteilchen. Die gemessene Energie *E* ist proportional zur Anzahl der nachgewiesenen Schauerteilchen *N*, woraus sich eine statistische Schwankung $\frac{\delta E}{E} = \frac{\delta N}{N} = \frac{1}{\sqrt{N}}$ ergibt.
- Bei einem realen Kalorimeter kommen Beiträge von dem Detektorrauschen sowie mechanischen und elektronischen Unregelmäßigkeiten zur Energieauflösung hinzu:

Linearität

Nicht nur $\frac{\delta E}{E}$ wichtig, sondern auch, dass das gemessene Signal linear mit E ansteigt.