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Butterfly effect

“Footprint” of a Heisenberg operator

C(t,x) = — {(JW(t, x), V(an)]2>ﬁ

C(t, X) X v v, \ \/
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Butterfly effect

C(t) = — <[W(t), V(O)]2>thermal

Assume parametrically large region
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Butterfly effect with local interactions

Scaling ansatz

C(ta .X) — = <[W(t9 X), V(Oa())]2> ~ 68/1(%)t

e A(v) IS a velocity dependent Lyapunov exponent

e For x <« r we recover the ordinary exponent 4, = A(0)

« The edge of the "butterfly cone" is defined by A(vy) =0
vy Is the butterfly speed



OTOC in AdS/CFT

AdS/CFT with Einstein gravity (near horizon scattering)
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Universal bounds:
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Example

AdS/CFT with stringy corrections
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How special are maximally chaotic theories?

2
Original expectation: 1, = 7” iImplies a weakly coupled gravity dual

Counter example: SYK/tensor models in 0+1d

2
Higher dimensions: 4, = ~~ for local operators is much stronger

Example: CFT on S217r X H,_, (conformal to Rindler)

AV) < J’%A)

spin of leading Regge trajectory

27 \% , :
AV) = — (1 — —> — j(A)=2 flat trajectory;
b 'B Infinite gap for higher spin single traces

2
If gravity EFT is dual to an ensemble average, 1(0) = 7][ suggests that

each element of the ensemble should have a weakly coupled bulk dual



In a nutshell

C(t,x) = — ([W(t,x), VO,0)2)  ~ ee7)!
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Pole skipping

Energy density retarded two point function Gj.‘;(a), p)

has a family of hydrodynamic poles defined by
a)pole(p — O) =0

for small p the possibilities:

+cp+ ... (sound)
a)pole(p) = ‘N2 . -
—iDp~+ ... (energy diffusion)

Prediction of AdS/CFT: Residue on this pole line vanishes at
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Pole skipping

Prediction of AdS/CFT: Residue on this pole line vanishes at
, 1
(w,p)p.s. =i | 1,—
VB
Proposed explanation

Lyapunov growth coming from exchange of hydrodynamic “fluid field”

V W
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%4 W

1
= (oo)(w, p) should have a pole at (w,p) = i4; <1—>
Vp

But (T%[¢]T"[s])(w, p) should not have an exponential growth

= in (TT")(w, p) the pole should be absent



Pole skipping

Example: 2d CFTs (maximal chaos in 2d)

Shydro X [dr[ax_oL(a§ — 0,)0; + 0,.03(0° — 0,)0p]
T~ 1

<6L6L>(a)9p) X 60(0)2 + 1)(0) _p)
t t

Exp growth frompoleatw =—-i,p =i
in real space giving ¢'™*
But energy density is a local functional of the hydro field:
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No growth, pole is skipped.



Pole skipping

1
(@,p)p.s. = 4 (1,—)

Vp

: 2n
Most known examples have maximal chaos 1, = —

Is there a pole skipping phenomenon away from maximal
chaos?
If yes, what’s the generalization?



Pole skipping

Known examples with non-maximal chaos:

2
 2d CFT(T°7T") is universal, displays pole skipping at (v, p) = i% (1,1)

All 2d CFTs have v; =1

2
Not all 2d CFTs have /; = 7’”

d > 2 CFT on Rindler space (T"°7T") is universal,
displays pole skipping at (w,p) =i (1,d — 1)

On Rindler space V](BT) =d-1"!

(T)
In general v; <v,

« Pole skipping with higher derivatives



Pole skipping

Our conjecture:

1
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VB
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/1L = —, and v,’ are the stress tensor contributions
A(v)
n _ ()
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Uy

Anticlimatic in that /; cannot be read from stress tensor 2pt func

Strong in that v\’ = v, in many non-maximally chaotic theories



Main example: SYK chain

{)(i,x’)(j,x} — 5xy5ij

o
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x=0  1<i<...<i <N I<i<...<iyp<N

I <ji<...<j;p<N

The J and J' are random variables, their variances are the couplings

T Nﬁ\/J2+J’2 y~\/?/(ﬁ+ﬁ)
COST

Solvable large N limit

Even more solvable if also large ¢, ¢g/N — 0



Four point function in SYK models

Large N is dominated by summable diagramms

Two point function:

D (v =

Still complicated to solve for
but much “cheaper” problem than direct diagonalization



Four point function in SYK models

Large N is dominated by summable diagramms

Four point function:

D WY conn =
L,]




Four point function in SYK models

The Schwinger-Dyson equations simplify drastically in the large ¢ limit

IR} — K(Tla (%) | 739 7:4) ~ [5(71 - 73)5(72 B T4) + ] <af3af4 " V(T3 - T4))

qg—2

The problem reduces to solving partial differential equations!



Velocity dependent Lyapunov exponent
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Energy correlations in SYK chain
szgx(()) .:: %%?
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Aim: calculate
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Energy correlations in SYK chain

Ggg(T, X) = <T€x+y(f)8y(0)>conn

Idea: extract from fermion four point function
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Energy correlations in SYK chain

Turning the crank, we obtain an expression
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The only known non-perturbative thermal correlator that is not fixed by symmetry
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Energy correlations in SYK chain

Pole skipping

Reminder:

-l V](BT) non-trivial

function of the
couplings

_\

A R — L Many lower half
4 -2 0 2 4 plane pole skipping

I points, not related to
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Energy correlations in SYK chain

Diffusive dispersion relations

\ Hydro regime

Diffusion pole
rejoining with first
: gapped mode,
/ outside of region
; of convergence for

hydro




Diffusion

1 W
One may extract the diffusion constant: D = Eyw <7rw tan <7> + 2)

Conjectured bounds:
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In a nutshell

®
x—1 X x+1

« SYK chain has analytically solvable limit ( large N and large ¢)

interpolating between weakly coupled (w = 0) and maximally chaotic (w = 1) physics

1.0

« We can calculate i(v) exactly as a function of the coupling \

There is a phase where chaos is maximal above S
a critical velocity, and there is a phase where it isn’t
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In a nutshell

« G®(w, p) can be calculated exactly as a function of the couplings

e This is the only such known thermal correlator,
has interesting analytic properties

e Confirms the modified pole-skipping conjecture
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