A Wheeler DeWitt approach for Liouville quantum gravity

Olga Papadoulaki

ICTP, Trieste

Work in collaboration with P. Betzios arXiv:2004.00002

18 March 2021

Plan of the talk

Introduction

- Jackiw Teitelboim (JT) gravity and Random matrices
- c = 1 Liouville theory
- Correspondence between MQM in the double scaling limit and c=1 Liouville theory

Main Part

- Liouville theory with boundaries
- Minisuperspace WdW wavefunctions
- Second quantised fermionic field theory (double scaled)
- Matrix model loop operators and correlation functions
- Single loops (Wavefunctions density of states of dual theory)
- Loop correlator and spectral form factor (Euclidean wormholes)
- Cosmological regime

Summary and Future Directions

Jackiw - Teitelboim (JT) gravity

- JT gravity is a simple (almost topological) theory of gravity in 2d
- The action is (metric $g_{\mu
 u}$, dilaton ϕ , manifold \mathcal{M})

$$S = S_0 \chi(\mathcal{M}) + \int_{\mathcal{M}} \sqrt{g} \phi(R+2) + \phi_0 \int_{\partial \mathcal{M}} \sqrt{h} K$$

• The first term is (pure) 2d topological gravity, the second localises the action on R=-2 geometries

- The last term governs the dynamics of fluctuating boundary/ies
- e^{S_0} governs the topological expansion (like g_{st})
- $S_0 \sim N$ measures the microscopic degrees of freedom (e.x. SYK/random matrix model)

(JT) gravity and Random Matrices

[Saad-Shenker-Stanford, Maldacena, Johnson, Turiaci, Mertens,...]

- There is a connection between JT gravity and random matrices
- The JT path integral can be resummed using a model of random Hermitean matrices H_{ij}

$$\mathcal{Z} = \int_{N \times N} dH e^{-NV(H)}$$

- By inserting loop operators one can create (Multi)-boundary geometries
- JT gravity provides an interesting window to the physics of the quantum gravity path integral
- Euclidean Wormholes, "3rd quantisation", connection with Random Matrices ...
- Possible to study (p,q) minimal models and c = 1 Liouville theory

Liouville theory

[Polyakov, David, Distler, Kawai...], Reviews by: [Ginsparg, Nakayama]

Can one make sense of string theory in case the conformal anomaly is not canceled?

- Gauge fix only the worldsheet diffeos and keep the conformal mode of the metric dynamical.
- Note that the measure $\mathcal{D}g$ is not invariant under $g_{ab} \to e^{\rho(\sigma)}g_{ab}$.
- Exponentiating the conformal anomaly from the measure, the total action becomes ($\mu = 1, ...d$, conformal gauge $g_{ab} = \hat{g}_{ab}e^{\phi(\sigma)}$)

$$S_{CFT} = \frac{1}{4\pi} \int d^2 \sigma \sqrt{\hat{g}} \left[\hat{g}^{ab} (\partial_a X^\mu \partial_b X_\mu + \partial_a \phi \partial_b \phi) + Q \hat{R} \phi + 4\pi \mu e^{2b\phi} \right] + ghosts$$

• This new theory is a "conformal theory" under the simultaneous transformation $g_{ab} \rightarrow e^{\rho(\sigma)}g_{ab}$, $\phi(\sigma) \rightarrow \phi(\sigma) - \rho(\sigma)$, iff

$$c_X + c_\phi + c_{gh} = 0$$
, $c_\phi = 1 + 6Q^2$, $Q = \sqrt{\frac{25 - d}{6}}$, $Q = b + 1/b$

 $\Rightarrow b$ is real up to $d = c_X = 1$

What is Matrix Quantum Mechanics

Reviews by: Ginsparg-Moore, Klebanov, Martinec,...

- MQM (gauged) is a 0 + 1 dimensional quantum mechanical theory of $N \times N$ Hermitian matrices M(t) and a non dynamical gauge field A(t).
- The Path Integral is:

$$e^{-iW} = \int \mathcal{D}M\mathcal{D}A \exp\left[-iN \int_{t_{in}}^{t_f} dt \operatorname{Tr}\left(\frac{1}{2} \left(D_t M\right)^2 + \frac{1}{2}M^2 - \frac{\kappa}{3!}M^3 + \dots\right)\right]$$

- One can diagonalise M by a unitary transformation $M(t) = U(t)\Lambda(t)U^{\dagger}(t)$ where $\Lambda(t)$ is diagonal and U(t) unitary.
- One then picks up a Jacobian from the path integral measure $(\forall t)$

$$\mathcal{D}M = \mathcal{D}U \prod_{i=1}^{N} d\lambda_i \Delta^2(\Lambda), \quad \Delta(\Lambda) = \prod_{i< j}^{N} (\lambda_i - \lambda_j)$$

• This Vandermonde determinant is responsible for many interesting physical aspects of Matrix Models.

Fermionic description

The Hamiltonian is

$$H = -\frac{1}{2\Delta^2(\lambda)} \frac{d}{d\lambda_i} \Delta^2(\lambda) \frac{d}{d\lambda_i} + \sum_{i < j} \frac{J_{ij} J_{ji}}{(\lambda_i - \lambda_j)^2} + V(\lambda_i) ,$$

- J_{ij} are "momenta" conjugate to SU(N) rotations
- Set the gauge field to zero impose the Gauss-law constraint $\delta S/\delta A = i[M, \dot{M}] \sim J = 0$ (singlet sector projection)
- Upon rescaling $\lambda \to \frac{\sqrt{N}}{\kappa} \lambda$ and redefining the wavefunction as $\tilde{\Psi}(\lambda) \equiv \Delta(\lambda)\Psi(\lambda)$, the Schrödinger equation now reads

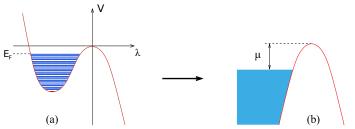
$$\left(-\frac{1}{2}\frac{d^2}{d\lambda_i^2} - \frac{1}{2}\lambda_i^2 + \frac{\sqrt{\hbar}}{3!}\lambda_i^3 + \dots\right)\tilde{\Psi}(\lambda) = \hbar^{-1}E\tilde{\Psi}(\lambda), \quad \hbar^{-1} = \frac{N}{\kappa^2}$$

• This describes N non interacting fermions in a potential $V(\lambda)$.

Double scaling limit

[Kazakov, Migdal...]

- Consider an initial state where the energy levels are populated up to some Fermi energy E_F below the top of the barrier, and send $\hbar \rightarrow 0$, $N \rightarrow \infty$, such that $E_F \rightarrow 0$.
- Enough to focus on the quadratic maximum of the potential. We hold $\mu = -E_F/\hbar$ fixed in the limit.
- The result is quantum mechanics of free fermions in an inverted harmonic oscillator potential, with states filled up to $-\mu < 0$.
- At this limit the model is perturbatively stable in $1/N \rightarrow 0$ expansion, since by WKB we can see that the tunneling probability goes to zero.



Connection with the quantum gravity path integral

The connection with the QGR path integral is through this double scaling limit [Kazakov, Migdal...]. This is *not* the usual 't Hooft limit.

• The double scaling limit produces smooth surfaces out of the Matrix fat-graphs while at the same time keeping all higher genera. It is defined by $\hbar, E_F \rightarrow 0$ as we discussed, while keeping $\mu \sim g_{st}^{-1}$ fixed.

- The QGR theory is the c = 1 Liouville theory. (It can also be interpreted as a 2D critical string theory in a linear dilaton background with a time direction t and a space direction ϕ)
- MQM describes the dynamics of D_0 (ZZ)-branes whose excitations are a "Tachyon" and a 1-d gauge field (open-closed string duality). [McGreevy, Verlinde]

Main Part

Quantum Gravity Path Integral

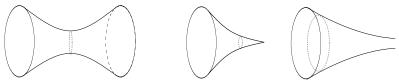
- In this talk we take the 2d quantum gravity path integral point of view of Liouville
- $\phi(z,\overline{z}), X(z,\overline{z})$ are the matter fields living on the two-dimensional space(-time)
- Our bulk space(-time) are the 2d surfaces ⇒ We are describing the evolution of "universes embedded in superspace"
- Superspace is the target space in the string theory interpretation
- We can also have boundaries on our surfaces on which a usual Holographic dual (a la AdS/CFT) would be expected to reside
- MQM captures the dynamics of these simple 2d universes in superspace
- There is a second quantised double scaled fermionic field theory [Moore] with coordinates t,λ gives the best description to compute continuum observables

Classical Liouville solutions

- The Poincare disk is a solution of Liouville EOM's (PSL(2, R) symmetry), the boundary is at $\phi \to \infty$
- More general solution; consider a quotient of the hyperbolic space H_2/Γ with Γ a discrete Fuchsian group

$$ds^{2} = e^{2b\phi}(z,\overline{z})dzd\overline{z} = \frac{Q}{\pi\mu b}\frac{\partial A\overline{\partial}B}{\left(A(z) - B(\overline{z})\right)^{2}}dzd\overline{z}$$

- The properties of the geometry are governed by the monodromy of A,B around non-trivial cycles \Rightarrow Three SL(2,R) conjugacy classes
 - Hyperbolic: Describes handles (higher genera)
 - Elliptic: Punctures (local operators)
 - Parabolic: Macroscopic boundaries (ex: Poincare disk)



Boundaries and Boundary states

[Zamolodchikov, Zamolodchikov, Fateev, Teschner]

• The Liouville action with boundaries is

$$S = \int_{\mathcal{M}} d^2 z \sqrt{g} \left(\frac{1}{4\pi} g^{ab} \partial_a \phi \partial_b \phi + \frac{1}{4\pi} Q R \phi + \mu e^{2b\phi} \right) + \int_{\partial \mathcal{M}} ds g^{1/4} \left(\frac{Q K \phi}{2\pi} + \mu_B e^{b\phi} \right)$$

- K is extrinsic curvature and μ , μ_B the bulk-boundary cosmological constants. For $c_{matter} = 1 \Rightarrow b = 1, Q = 2$ and $\mu_B = \sqrt{\mu} \cosh(\pi \sigma)$.
- Liouville theory has two types of boundary states
- The FZZT boundary state (FZZT are *D*1 branes with Neumann boundary conditions for the open strings ⇒ extending along Liouville direction)

$$|B_{\sigma}\rangle = \int_{-\infty}^{\infty} d\nu e^{2\pi i\nu\sigma} \Psi_{\nu}(\sigma) |\nu\rangle,$$

$$\Psi_{\nu}(\sigma,\mu) = (\mu)^{-i\nu/b} \frac{\Gamma(1+2i\nu b)\Gamma(1+2i\nu/b)\cos(2\pi\sigma\nu)}{2^{1/4}(-2i\pi\nu)}$$

Minisuperspace WdW wavefunctions

- Study the WdW equation at a minisuperspace level (zero modes)
- The bulk Liouville minisuperspace wavefunctions are ($\ell = e^{2\phi_0}$)

$$\left(-\frac{\partial^2}{\partial\phi_0^2} + 4\mu e^{2\phi_0} - q^2\right)\Psi_q(\phi_0) = 0$$

with solutions

$$\Psi_q^{macro}(\ell) = \frac{1}{\pi} \sqrt{q \sinh \pi q} K_{iq}(2\sqrt{\mu}\ell)$$
$$\int_0^\infty \frac{d\ell}{\ell} \Psi_q^{macro}(\ell) \Psi_{q'}^{macro}(\ell) = \delta(q-q')$$

For c = 1, q is the momentum conjugate to X (matter boson)

• These are macroscopic states that correspond to the Laplace transform of the fixed μ_B FZZT wavefunctions

$$\Psi_q^{macro}(\ell) = \int_0^\infty d(\pi\sigma) e^{-2\ell\sqrt{\mu}\cosh(\pi\sigma)} \Psi_q(\sigma,\mu)$$

• The wavefunctions corresponding to local punctures/operators are non-normalisable

"Non-perturbative observables" - Fermionic field theory

- We wish to describe observables in the continuum double scaling limit \Rightarrow second quantised fermionic field theory

$$S = \int dt \, d\lambda \, \hat{\psi}^{\dagger}(t,\lambda) \left(i \frac{\partial}{\partial t} + \frac{\partial^2}{\partial \lambda^2} + \frac{\lambda^2}{4} \right) \hat{\psi}(t,\lambda)$$

• Eigenmodes: normalised even/odd parabolic cylinder functions $\psi^s(\omega,\lambda)$

$$\hat{\psi}(t,\,\lambda) = \int d\omega \, e^{i\omega t} \, \hat{b}_s(\omega) \, \psi^s(\omega,\lambda)$$

with $\hat{b}_s(\omega)$ are continuum fermionic oscillators and the fermi-sea vacuum $|\mu\rangle$ (μ is a chemical potential), is defined by

$$\hat{b}_s(\omega)|\mu\rangle = 0, \quad \omega < \mu$$

 $\hat{b}_s^{\dagger}(\omega)|\mu\rangle = 0, \quad \omega > \mu$

- This is a "3rd quantised action" encapsulating topology changing processes (even though non-interacting)!
- Several choices for the non-perturbative vacuum: both sides filled one side (wall), flux condition [Balthazar-Rodriguez-Yin]

Macroscopic loop operators

• The fixed length matrix model loop operator is

$$\hat{W}(L,x) \,=\, \frac{1}{N} \operatorname{Tr} e^{L \hat{M}(x)}$$

• The fixed boundary cc. loop operator is

$$\hat{W}(\mu_B, x) = -\frac{1}{N} \operatorname{Tr} \log[\mu_B - \hat{M}(x)] = \frac{1}{N} \sum_{l=1}^{\infty} \frac{1}{l} \operatorname{Tr} \left[\hat{M}(x) / \mu_B \right]^l - \log \mu_B$$

• In terms of the fermions, the most basic operator is the density operator

$$\hat{\rho}(x,\lambda) = \hat{\psi}^{\dagger}(x,\lambda)\hat{\psi}(x,\lambda)$$

- In the double scaling continuum limit we can rewrite Matrix operators in terms of the basic density operator
- In particular the continuum macroscopic loop operators with length ℓ

$$\hat{\mathcal{W}}_{cont}(\ell, x) = \int d\lambda \, e^{-\ell\lambda} \, \hat{\rho}(x, \lambda)$$

• Since the field theory is free we can compute any correlation function of loop operators in terms of multiple nested integrals [Moore]

One loop - WdW wavefunction

 With a single loop insertion, we are computing the WdW wavefunction of the bulk cc. operator keeping the boundary size ℓ fixed

$$\Psi_{WdW}(\ell,\mu,q=0) = \frac{\partial \mathcal{W}}{\partial \mu}(\ell,\mu,q=0) = \Re \left(i \int_0^\infty d\xi \, e^{i\xi} \frac{e^{-i \coth(\xi/2\mu)\frac{\ell^2}{2}}}{\sinh(\xi/2\mu)} \right)$$

• This expression takes into account the effects of topologies ($g_{st} \sim 1/\mu$ governs the genus expansion)

$$g_{st}^{-1}$$
 + g_{st} + g_{st}^{3} + \cdots

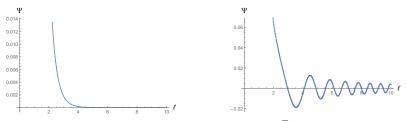
• It can be written in terms of Whittaker functions that obey

$$\left(-\left[\ell\frac{\partial}{\partial\ell}\right]^2 + 4\mu\ell^2 + 4q^2 - \ell^4\right)\frac{W_{i\mu,q}(i\ell^2)}{\ell} = 0$$

- The last term is inducing wormhole-like effects that involve the square of the cosmological constant operator $\sim (\int e^{2\phi})^2$
- We would like to interpret this wave-function as the thermal partition function of the boundary dual: $\Psi_{WdW}(\ell) = Z_{dual}(\beta = \ell)$

One loop - WdW wavefunction

The genus zero wavefunction vs. the non-perturbative answer (double well)



• Exponential vs slowly decaying envelope $\sim 1/\sqrt{\ell}\log\ell$

- There is a non-perturbative ambiguity due to the inverted oscillator potential
- If we put on a wall $\lambda > 0$, the partition function is

$$Z_{dual}^{(+)}(\ell) = \Re\left(\frac{i}{2}\int_0^\infty d\xi e^{i\mu\xi} \frac{e^{-\frac{i}{2}\ell^2 \coth(\xi/2)}}{\sinh\xi/2} \operatorname{Erfc}\left[\frac{\ell}{\sqrt{2i\tanh\xi/2}}\right]\right)$$

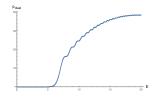
and is positive definite even at the non-perturbative level

One boundary - Density of states

• The Laplace transform of the wavefunction gives the density of states of the boundary dual ($\lambda = E$ plays the role of the energy of the boundary dual!)

$$\rho_{dual}(E) = \int dx \langle \mu | \hat{\psi}^{\dagger}(x, E) \hat{\psi}(x, E) | \mu \rangle$$

- Exponential growth $\sim \frac{1}{2\pi} \frac{e^{-\pi\mu+2\sqrt{\mu E}}}{(\pi\mu)}$ for small energies
- Transitions to a Wigner semi-circle with oscillations $\sim \frac{1}{2\pi}\sqrt{E^2 4\mu^2} + Osc.$



- The chemical potential μ plays the role of a mass gap
- The DOS can have support on both positive and negative energies (non-perturbative definition of the model), but is always positive definite
- It is not clear whether it admits a Hilbert space interpretation

Comparison with minimal strings and JT gravity

[Johnson - Mertens - Turiaci]

- We can compare the genus zero wavefunction with the analogous results for minimal models and JT gravity
- Laplace transform for the DOS ((2, p) minimal strings \Rightarrow use $\nu = p/2$)

$$\int_{c-i\infty}^{c+i\infty} \frac{d\ell}{2\pi i} e^{\ell E} \frac{1}{\ell} K_{\nu}(2\sqrt{\mu}\ell) = \frac{1}{\nu} \sinh\left(\nu \cosh^{-1}(E/2\sqrt{\mu})\right), \quad E > 2\sqrt{\mu}$$

• In a further limit $p \to \infty, E \sim E_{JT}/p$ one can obtain the density of states of JT gravity

$$\rho_{J.T.}^{Sch.}(E_{JT},\gamma) = \frac{\gamma}{2\pi^2} \sinh\left(2\pi\sqrt{2\gamma E_{JT}}\right)$$

- Non-perturbative computations of the DOS for minimal models exhibit similar oscillatory behaviour as in c=1 Liouville

Euclidean wormholes - Loop correlator

• Another quantity of interest is the correlator between two macroscopic loops $\langle \hat{\mathcal{W}}(\ell_1,q)\hat{\mathcal{W}}(\ell_2,q) \rangle$ given by

$$\int_{0}^{\infty} \frac{d\xi}{\xi \sinh(\xi/2)} e^{i\mu\xi - \frac{1}{2}i(\ell_{1}^{2} + \ell_{2}^{2})\coth(\xi/2)} \int_{0}^{\infty} ds e^{-|q|s} \left(e^{i\ell_{1}\ell_{2} \frac{\cosh(s-\xi/2)}{\sinh(\xi/2)}} - e^{i\ell_{1}\ell_{2} \frac{\cosh(s+\xi/2)}{\sinh(\xi/2)}} \right)$$

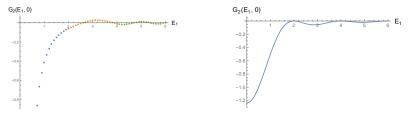
- The geometries that contribute to it are Euclidean wormholes connecting two boundaries
- The genus-zero answer is a propagator between two macroscopic wavefunctions

$$\int_{-\infty}^{\infty} dp \, \frac{1}{q^2 + p^2} \, \frac{p}{\sinh(\pi p)} \, \Psi_p^{(macro)}(\ell_1) \, \Psi_p^{(macro)}(\ell_2)$$

• The result does not factorise even at the non-perturbative level ⇒ What couples the (two) boundary theories?

Density two point function

• The density two point function $\langle \mu | \hat{\rho}_{dual}(E_1) \hat{\rho}_{dual}(E_2) | \mu \rangle_c$ can be computed and its behaviour resembles that of the *Sine-Kernel*



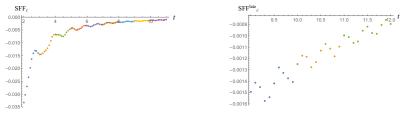
- The Sine-Kernel is indicative of level repulsion a universal feature of quantum chaotic systems whose energy statistics coincide with random matrix statistics
- The differences though are indicative of a small deviation from the GUE/sine kernel results, that survives in the double scaling limit
- This is also pronounced in the *spectral form factor* (SFF)

Spectral form factor

- Another observable of interest is the SFF: $\langle Z(\beta + it)Z(\beta it) \rangle$
- · Both disconnected and connected geometries contribute to it

$$SFF(\beta,t) = \int dE_1 dE_2 e^{-\beta(E_1 + E_2) + it(E_1 - E_2)} \langle \mu | \hat{\rho}_{dual}(E_1) \hat{\rho}_{dual}(E_2) | \mu \rangle$$

- The disconnected part is positive definite and decays as $\sim 1/t \log^2 t$
- The connected part leads to an approximate ramp-plateau behaviour with persistent oscillations



• Similar to the JT results but has features of the expected oscillatory behaviour of higher dimensional Unitary theories

Cosmological regime

[Maldacena-Turiaci-Yang, Cotler-Jensen-Maloney, Hertog]

- The dS_2 geometry and $-AdS_2$ metrics are

$$ds_{dS_2}^2 = -d\tau^2 + \cosh^2 \tau d\theta^2 , \quad ds_{-AdS_2}^2 = -d\tilde{\tau}^2 - \sinh^2 \tilde{\tau} d\theta^2$$

where $\tau = i\frac{\pi}{2} + \tilde{\tau}$

- In the matrix model presciption this corresponds to an analytic continuation $\ell=-iz$
- The boundary "Hamiltonian" is now generating space translations

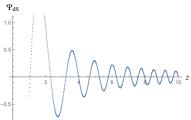
Cosmological regime in Liouville

[DaCunha-Martinec...]

- There have been studies of the cosmological regime of Liouville theory in the past, giving a plethora of wavefunctions at genus zero
- $\Psi_{n.b.} \sim J_{\nu}(z)$, is the no-boundary wavefunction (Hartle-Hawking contour). It is real, goes to zero at small z and oscillates at large z
- $\Psi_{t.} \sim H_{\nu}^{(2)}(z)$ corresponds to the *tunneling proposal*. It is complex and increasing at small z
- $\Psi_{s.c.} \sim H_{iq}^{(1)}(z)$ corresponds to the continuation $b \to ib, \phi \to i\phi$. This is the wavefunction for the supercritical Liouville c > 25
- A common property is that they are oscillatory at large $z \Rightarrow$ Large Lorentzian semiclassical geometries

Perturbative & non perturbative comments

• The non-perturbative analytically continued wavefunction



• The analytic continuation of our genus zero result is

$$\Psi_{cosm.}(z) = -i \frac{\pi \sqrt{\mu}}{z} H_1^{(1)}(2\sqrt{\mu}z)$$

- the asymptotic genus expansion and the analytic continuation do not commute \Rightarrow Stokes phenomena
- Our non-perturbative computation encodes several types of Bessel wavefunctions (as different asymptotic expansions of Whittaker functions)
- Our study shows that the natural non-perturbative models for AdS_2 and dS_2 are different

Summary and Future

Summary

- We performed an analysis c = 1 Liouville theory in the spirit of JT gravity
- This is a *richer* 2d QG theory admitting a (non-perturbative) MQM description
- MQM and the fermionic field theory provide a powerful "superspace description"
- Euclidean wormholes/topologies are automatically included in this 2d QG path integral
- We do not know if there is an AdS/CFT type of boundary dual, but it inevitably has to exhibit approximate *chaotic* properties (sine-kernel, ramp-plateau ...)
- Various non-perturbative completions (AdS_2 and dS_2 seem be dual to different such completions)

The dictionary

Quantum gravity	Matrix model	Boundary dual
Liouville potential $\mu e^{2\phi}$	Inverted oscillator potential	-
Cosmological constant μ	Chemical potential $-\mu$	IR mass gap μ
$D0$ particle (ϕ : D, X: N)	Matrix eigenvalue λ_i	Energy eigenvalue E_i
Boundary: $S_{bdy} = \mu_B \oint e^{\phi}$	Loop operator: $\langle Tr \log[\mathrm{z} - \lambda] \rangle$	Microcanonical $\langle \rho_{dual}(E) \rangle$
Bdy. cosm. const. μ_B	Loop parameter z	Energy E
fixed size bdy $\ell = e^{\phi_0}$	Loop length ℓ	Inv. temperature β
WdW wavefunction $\Psi(\ell)$	Fixed size loop oper. $\langle M_1(\ell) \rangle$	Partition func. $Z_{dual}(\beta)$
Third quantised vacuum	Fermi sea of eigenvalues	-
Closed surfaces	Fermionic density quanta	-
S-matrix of universes	S-matrix of density quanta	-
Two boundaries: $\ell_{1,2}$	Loop correlator $\langle M_2(\ell_1,\ell_2) \rangle$	SFF: $\ell_{1,2} = \beta \pm it$
Two boundaries: $\mu_B^{1,2}$	Density corr. $\langle \rho(\lambda_1)\rho(\lambda_2) \rangle$	DOS. correlator

- The missing entries either do not have an interpretation or we do not understand it yet
- For example a single boundary dual does not seem to capture the complete "3rd quantised Hilbert space", where we can have multiboundary configurations

Higher Dimensions ?

- It is hard to extrapolate our findings and comments in higher dimensions (d > 3)
- All the models so far are in 2d where they can also be interpreted as string theories of a certain kind and gravity is rather trivial
- The boundaries are introduced by studying correlators of the matrix theories
- Define analogous operators that create higher dimensional surface boundaries?
- BUConjecture by [McNamara Vafa] (based on WG Swampland conjectures and work by [Maxfield Marolf]) \Rightarrow Higher dimensional theories (d > 3) are fundamentally different: \mathcal{H}_{BU} is trivial
- But still: What about AdS wormhole solutions in higher d? [Maldacena-Maoz]
 Discard them?[Arkani-Hamed - Orgera - Polchinski]
 Interacting QFT's? [Betzios - Kiritsis - O. P.]
 Refinement of Holography?

Future

- Study more refined observables (correlators of boundary operators)
- Study the non-singlet sector of MQM [Maldacena, Gaiotto, Betzios-O.P]
- Study other models such as WZW cosets
- Compute amplitudes for processes in superspace, (universes branching off etc...)
- It has been argued that the non-perturbative effects in JT gravity are doubly non-perturbative i.e. $e^{-c/g_s}\sim e^{-ce^{S_0}}$
- Here this expansion is governed by $e^{-c\mu}$ effects that do not seem to have such a doubly non-perturbative structure from the MQM point of view
- A doubly non-perturbative structure might arise again if μ admits a more microscopic description in terms of the putative boundary dual theory...
- What is the bulk origin of doubly layered expansions?
- Idea: Geometries inside geometries ⇒ two different genus expansions: both in target space and on the worldsheet

Thank you!