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Plan of the talk
Introduction
• Jackiw Teitelboim (JT) gravity and Random matrices
• c = 1 Liouville theory
• Correspondence between MQM in the double scaling limit and c = 1
Liouville theory

Main Part
• Liouville theory with boundaries
• Minisuperspace WdW wavefunctions
• Second quantised fermionic field theory (double scaled)
• Matrix model loop operators and correlation functions
• Single loops (Wavefunctions - density of states of dual theory)
• Loop correlator and spectral form factor (Euclidean wormholes)
• Cosmological regime

Summary and Future Directions

Olga Papadoulaki c=1 Liouville à la JT 2/32



Jackiw - Teitelboim (JT) gravity

• JT gravity is a simple (almost topological) theory of gravity in 2d

• The action is (metric gµν , dilaton φ, manifoldM)

S = S0 χ(M) +
∫
M

√
gφ(R+ 2) + φ0

∫
∂M

√
hK

• The first term is (pure) 2d topological gravity, the second localises the
action on R = −2 geometries

• The last term governs the dynamics of fluctuating
boundary/ies

• eS0 governs the topological expansion (like gst)

• S0 ∼ N measures the microscopic degrees of
freedom (e.x. SYK/random matrix model)
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(JT) gravity and Random Matrices
[Saad-Shenker-Stanford, Maldacena, Johnson, Turiaci, Mertens,...]

• There is a connection between JT gravity and random matrices
• The JT path integral can be resummed using a model of random
Hermitean matrices Hij

Z =
∫
N×N

dHe−NV (H)

gst gst gst� � � �����3-1

• By inserting loop operators one can create (Multi)-boundary geometries
• JT gravity provides an interesting window to the physics of the quantum
gravity path integral

• Euclidean Wormholes, "3rd quantisation", connection with Random
Matrices ...

• Possible to study (p, q) minimal models and c = 1 Liouville theory
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Liouville theory
[Polyakov, David, Distler, Kawai...], Reviews by: [Ginsparg, Nakayama]

Can one make sense of string theory in case the conformal anomaly is not
canceled?
• Gauge fix only the worldsheet diffeos and keep the conformal mode of the
metric dynamical.

• Note that the measure Dg is not invariant under gab → eρ(σ)gab.
• Exponentiating the conformal anomaly from the measure, the total
action becomes (µ = 1, ...d, conformal gauge gab = ĝabe

φ(σ))

SCFT = 1
4π

∫
d2σ
√
ĝ
[
ĝab(∂aXµ∂bXµ + ∂aφ∂bφ) +QR̂φ+ 4πµe2bφ

]
+ ghosts

• This new theory is a "conformal theory" under the simultaneous
transformation gab → eρ(σ)gab, φ(σ)→ φ(σ)− ρ(σ), iff

cX + cφ + cgh = 0 , cφ = 1 + 6Q2 , Q =
√

25− d
6 , Q = b+ 1/b

⇒ b is real up to d = cX = 1
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What is Matrix Quantum Mechanics
Reviews by: Ginsparg-Moore, Klebanov, Martinec,...

• MQM (gauged) is a 0 + 1 dimensional quantum mechanical theory of
N ×N Hermitian matrices M(t) and a non dynamical gauge field A(t).

• The Path Integral is:

e−iW =
∫
DMDA exp

[
−iN

∫ tf

tin

dtTr
(

1
2 (DtM)2 + 1

2M
2 − κ

3!M
3 + ...

)]
• One can diagonalise M by a unitary transformation
M(t) = U(t)Λ(t)U†(t) where Λ(t) is diagonal and U(t) unitary.

• One then picks up a Jacobian from the path integral measure (∀t)

DM = DU
N∏
i=1

dλi∆2(Λ), ∆(Λ) =
N∏
i<j

(λi − λj)

• This Vandermonde determinant is responsible for many interesting
physical aspects of Matrix Models.
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Fermionic description

• The Hamiltonian is

H = − 1
2∆2(λ)

d

dλi
∆2(λ) d

dλi
+
∑
i<j

JijJji
(λi − λj)2 + V (λi) ,

• Jij are “momenta” conjugate to SU(N) rotations
• Set the gauge field to zero - impose the Gauss-law constraint
δS/δA = i[M, Ṁ ] ∼ J = 0 (singlet sector projection)

• Upon rescaling λ→
√
N
κ λ and redefining the wavefunction as

Ψ̃(λ) ≡ ∆(λ)Ψ(λ), the Schrödinger equation now reads(
−1

2
d2

dλ2
i

− 1
2λ

2
i +
√
~

3! λ
3
i + ...

)
Ψ̃(λ) = ~−1EΨ̃(λ), ~−1 = N

κ2

• This describes N non interacting fermions in a potential V (λ).
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Double scaling limit
[Kazakov, Migdal...]

• Consider an initial state where the energy levels are populated up to
some Fermi energy EF below the top of the barrier, and send ~→ 0,
N →∞, such that EF → 0.

• Enough to focus on the quadratic maximum of the potential. We hold
µ = −EF /~ fixed in the limit.

• The result is quantum mechanics of free fermions in an inverted harmonic
oscillator potential, with states filled up to −µ < 0.

• At this limit the model is perturbatively stable in 1/N → 0 expansion,
since by WKB we can see that the tunneling probability goes to zero.

μEF

V

λ
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Connection with the quantum gravity path integral

The connection with the QGR path integral is through this double scaling
limit [Kazakov, Migdal...]. This is not the usual ’t Hooft limit.

• The double scaling limit produces
smooth surfaces out of the Matrix
fat-graphs while at the same time
keeping all higher genera. It is
defined by ~, EF → 0 as we
discussed, while keeping µ ∼ g−1

st

fixed.
• The QGR theory is the c = 1 Liouville theory. (It can also be interpreted
as a 2D critical string theory in a linear dilaton background with a time
direction t and a space direction φ)

• MQM describes the dynamics of D0 (ZZ)-branes whose excitations are a
"Tachyon" and a 1-d gauge field (open-closed string duality). [McGreevy,
Verlinde]
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Main Part
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Quantum Gravity Path Integral

• In this talk we take the 2d quantum gravity path integral point of view of
Liouville

• φ(z, z), X(z, z) are the matter fields living on the two-dimensional
space(-time)

• Our bulk space(-time) are the 2d surfaces ⇒ We are describing the
evolution of "universes embedded in superspace"

• Superspace is the target space in the string theory interpretation

• We can also have boundaries on our surfaces on which a usual
Holographic dual (a la AdS/CFT) would be expected to reside

• MQM captures the dynamics of these simple 2d universes in superspace

• There is a second quantised double scaled fermionic field theory [Moore]
with coordinates t, λ gives the best description to compute continuum
observables
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Classical Liouville solutions
• The Poincare disk is a solution of Liouville EOM’s (PSL(2, R)
symmetry), the boundary is at φ→∞

• More general solution; consider a quotient of the hyperbolic space H2/Γ
with Γ a discrete Fuchsian group

ds2 = e2bφ(z, z)dzdz = Q

πµb

∂A∂B

(A(z)−B(z))2 dzdz

• The properties of the geometry are governed by the monodromy of A,B
around non-trivial cycles ⇒ Three SL(2, R) conjugacy classes
◦ Hyperbolic: Describes handles (higher genera)
◦ Elliptic: Punctures (local operators)
◦ Parabolic: Macroscopic boundaries (ex: Poincare disk)
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Boundaries and Boundary states
[Zamolodchikov, Zamolodchikov, Fateev, Teschner]

• The Liouville action with boundaries is

S =
∫
M
d2z
√
g
( 1

4π g
ab∂aφ∂bφ+ 1

4πQRφ+ µe2bφ
)

+
∫
∂M

dsg1/4
(
QKφ

2π + µBe
bφ
)

• K is extrinsic curvature and µ, µB the bulk-boundary cosmological
constants. For cmatter = 1 ⇒ b = 1, Q = 2 and µB = √µ cosh(πσ).

• Liouville theory has two types of boundary states
• The FZZT boundary state (FZZT are D1 branes with Neumann boundary
conditions for the open strings ⇒ extending along Liouville direction)

|Bσ〉 =
∫ ∞
−∞

dνe2πiνσΨν(σ)|ν〉 ,

Ψν(σ, µ) = (µ)−iν/bΓ(1 + 2iνb)Γ(1 + 2iν/b) cos(2πσν)
21/4(−2iπν)
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Minisuperspace WdW wavefunctions
• Study the WdW equation at a minisuperspace level (zero modes)
• The bulk Liouville minisuperspace wavefunctions are ( ` = e2φ0)(

− ∂2

∂φ2
0

+ 4µe2φ0 − q2
)

Ψq(φ0) = 0

with solutions

Ψmacro
q (`) = 1

π

√
q sinh πqKiq(2

√
µ`)∫ ∞

0

d`

`
Ψmacro
q (`)Ψmacro

q′ (`) = δ(q − q′)

For c = 1, q is the momentum conjugate to X (matter boson)
• These are macroscopic states that correspond to the Laplace transform of
the fixed µB FZZT wavefunctions

Ψmacro
q (`) =

∫ ∞
0

d(πσ)e−2`√µ cosh(πσ)Ψq(σ, µ)

• The wavefunctions corresponding to local punctures/operators are
non-normalisable
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"Non-perturbative observables" - Fermionic field theory
• We wish to describe observables in the continuum double scaling limit ⇒
second quantised fermionic field theory

S =
∫
dt dλ ψ̂†(t, λ)

(
i
∂

∂t
+ ∂2

∂λ2 + λ2

4

)
ψ̂(t, λ)

• Eigenmodes: normalised even/odd parabolic cylinder functions ψs(ω, λ)

ψ̂(t, λ) =
∫
dω eiωt b̂s(ω)ψs(ω, λ)

with b̂s(ω) are continuum fermionic oscillators and the fermi-sea vacuum
|µ〉 (µ is a chemical potential), is defined by

b̂s(ω)|µ〉 = 0, ω < µ

b̂†s(ω)|µ〉 = 0, ω > µ

• This is a "3rd quantised action" encapsulating topology changing
processes (even though non-interacting)!

• Several choices for the non-perturbative vacuum: both sides filled - one
side (wall), flux condition [Balthazar-Rodriguez-Yin]

Olga Papadoulaki c=1 Liouville à la JT 15/32



Macroscopic loop operators
• The fixed length matrix model loop operator is

Ŵ (L, x) = 1
N

Tr eLM̂(x)

• The fixed boundary cc. loop operator is

Ŵ (µB , x) = − 1
N

Tr log[µB − M̂(x)] = 1
N

∞∑
l=1

1
l
Tr
[
M̂(x)/µB

]l
− logµB

• In terms of the fermions, the most basic operator is the density operator

ρ̂(x, λ) = ψ̂†(x, λ)ψ̂(x, λ)
• In the double scaling continuum limit we can rewrite Matrix operators in
terms of the basic density operator

• In particular the continuum macroscopic loop operators with length `

Ŵcont(`, x) =
∫
dλ e−`λ ρ̂(x, λ)

• Since the field theory is free we can compute any correlation function of
loop operators in terms of multiple nested integrals [Moore]
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One loop - WdW wavefunction
• With a single loop insertion, we are computing the WdW wavefunction of
the bulk cc. operator keeping the boundary size ` fixed

ΨWdW (`, µ, q = 0) = ∂W
∂µ

(`, µ, q = 0) = <
(
i

∫ ∞
0

dξ eiξ
e−i coth(ξ/2µ) `2

2

sinh(ξ/2µ)

)
• This expression takes into account the effects of topologies (gst ∼ 1/µ
governs the genus expansion)

gst gst gst� � � �����3-1

• It can be written in terms of Whittaker functions that obey(
−
[
`
∂

∂`

]2
+ 4µ`2 + 4q2 − `4

)
Wiµ,q(i`2)

`
= 0

• The last term is inducing wormhole-like effects that involve the square of
the cosmological constant operator ∼ (

∫
e2φ)2

• We would like to interpret this wave-function as the thermal partition
function of the boundary dual: ΨWdW (`) = Zdual(β = `)
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One loop - WdW wavefunction
• The genus zero wavefunction vs. the non-perturbative answer (double
well)

2 4 6 8 10
ℓ

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ψ

2 4 6 8 10
ℓ

-0.02

0.02

0.04

0.06

Ψ

• Exponential vs slowly decaying envelope ∼ 1/
√
` log `

• There is a non-perturbative ambiguity due to the inverted oscillator
potential

• If we put on a wall λ > 0, the partition function is

Z
(+)
dual(`) = <

(
i

2

∫ ∞
0

dξeiµξ
e−

i
2 `

2 coth(ξ/2)

sinh ξ/2 Erfc
[

`√
2i tanh ξ/2

])

and is positive definite even at the non-perturbative level
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One boundary - Density of states

• The Laplace transform of the wavefunction gives the density of states of
the boundary dual (λ = E plays the role of the energy of the boundary
dual!)

ρdual(E) =
∫
dx〈µ|ψ̂†(x,E)ψ̂(x,E)|µ〉

• Exponential growth ∼ 1
2π

e−πµ+2√µE

(πµ)
for small energies

• Transitions to a Wigner semi-circle
with oscillations
∼ 1

2π

√
E2 − 4µ2 + Osc. 5 10 15 20

Ε

10

20

30

40

ρdual

• The chemical potential µ plays the role of a mass gap
• The DOS can have support on both positive and negative energies
(non-perturbative definition of the model), but is always positive definite

• It is not clear whether it admits a Hilbert space interpretation
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Comparison with minimal strings and JT gravity
[Johnson - Mertens - Turiaci]

• We can compare the genus zero wavefunction with the analogous results
for minimal models and JT gravity

• Laplace transform for the DOS ((2, p) minimal strings ⇒ use ν = p/2)

∫ c+i∞

c−i∞

d`

2πi e
`E 1

`
Kν(2√µ`) = 1

ν
sinh

(
ν cosh−1(E/2√µ)

)
, E > 2√µ

• In a further limit p→∞, E ∼ EJT /p one can obtain the density of
states of JT gravity

ρSch.J.T. (EJT , γ) = γ

2π2 sinh
(

2π
√

2γEJT
)

• Non-perturbative computations of the DOS for minimal models exhibit
similar oscillatory behaviour as in c = 1 Liouville
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Euclidean wormholes - Loop correlator

• Another quantity of interest is the correlator between two macroscopic
loops 〈Ŵ(`1, q)Ŵ(`2, q)〉 given by

∫ ∞
0

dξ

ξ sinh(ξ/2)
eiµξ−

1
2 i(`

2
1+`2

2) coth(ξ/2)
∫ ∞

0
dse−|q|s

(
e
i`1`2

cosh(s−ξ/2)
sinh(ξ/2) − ei`1`2

cosh(s+ξ/2)
sinh(ξ/2)

)
(1)

• The geometries that contribute to it are Euclidean wormholes connecting
two boundaries

• The genus-zero answer is a propagator between two macroscopic
wavefunctions∫ ∞

−∞
dp

1
q2 + p2

p

sinh(πp) Ψ(macro)
p (`1) Ψ(macro)

p (`2)

• The result does not factorise even at the non-perturbative level ⇒ What
couples the (two) boundary theories?
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Density two point function

• The density two point function 〈µ|ρ̂dual(E1)ρ̂dual(E2)|µ〉c can be
computed and its behaviour resembles that of the Sine-Kernel

1 2 3 4 5 6
Ε1

-0.8

-0.6

-0.4

-0.2

G2(Ε1, 0)

1 2 3 4 5 6
Ε1

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

G2 (Ε1 , 0)

• The Sine-Kernel is indicative of level repulsion - a universal feature of
quantum chaotic systems whose energy statistics coincide with random
matrix statistics

• The differences though are indicative of a small deviation from the
GUE/sine kernel results, that survives in the double scaling limit

• This is also pronounced in the spectral form factor (SFF)
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Spectral form factor
• Another observable of interest is the SFF: 〈Z(β + it)Z(β − it)〉
• Both disconnected and connected geometries contribute to it

SFF (β, t) =
∫
dE1dE2e

−β(E1+E2)+it(E1−E2)〈µ|ρ̂dual(E1)ρ̂dual(E2)|µ〉

• The disconnected part is positive definite and decays as ∼ 1/t log2t

• The connected part leads to an approximate ramp-plateau behaviour with
persistent oscillations

2 4 6 8 10
t
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t
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-0.0010

-0.0009

SFFlatec

• Similar to the JT results but has features of the expected oscillatory
behaviour of higher dimensional Unitary theories
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Cosmological regime
[Maldacena-Turiaci-Yang, Cotler-Jensen-Maloney, Hertog]

• To compute a cosmological wavefunction, there is an alternative to
Hartle-Hawking contour that passes through "−AdS2 geometries"

dS

0

−AdS2
2

2S

τ

iπ/2

• The dS2 geometry and −AdS2 metrics are

ds2
dS2

= −dτ2 + cosh2 τdθ2 , ds2
−AdS2

= −dτ̃2 − sinh2 τ̃ dθ2

where τ = iπ2 + τ̃

• In the matrix model presciption this corresponds to an analytic
continuation ` = −iz

• The boundary "Hamiltonian" is now generating space translations
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Cosmological regime in Liouville
[DaCunha-Martinec...]

• There have been studies of the cosmological regime of Liouville theory in
the past, giving a plethora of wavefunctions at genus zero

• Ψn.b. ∼ Jν(z), is the no-boundary wavefunction (Hartle-Hawking
contour). It is real, goes to zero at small z and oscillates at large z

• Ψt. ∼ H(2)
ν (z) corresponds to the tunneling proposal. It is complex and

increasing at small z

• Ψs.c. ∼ H(1)
iq (z) corresponds to the continuation b→ ib, φ→ iφ. This is

the wavefunction for the supercritical Liouville c > 25

• A common property is that they are oscillatory at large z ⇒ Large
Lorentzian semiclassical geometries

Olga Papadoulaki c=1 Liouville à la JT 25/32



Perturbative & non perturbative comments

• The non-perturbative
analytically continued
wavefunction

2 4 6 8 10
z

-0.5

0.5

1.0

ΨdS

• The analytic continuation of
our genus zero result is

Ψcosm.(z) = −i
π
√
µ

z
H

(1)
1 (2√µz)

• the asymptotic genus expansion and the analytic continuation do not
commute ⇒ Stokes phenomena

• Our non-perturbative computation encodes several types of Bessel
wavefunctions (as different asymptotic expansions of Whittaker functions)

• Our study shows that the natural non-perturbative models for AdS2 and
dS2 are different
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Summary and Future
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Summary
• We performed an analysis c = 1 Liouville theory in the spirit of JT gravity

• This is a richer 2d QG theory admitting a (non-perturbative) MQM
description

• MQM and the fermionic field theory provide a powerful "superspace
description"

• Euclidean wormholes/topologies are automatically included in this 2d QG
path integral

• We do not know if there is an AdS/CFT type of boundary dual, but it
inevitably has to exhibit approximate chaotic properties (sine-kernel,
ramp-plateau ...)

• Various non-perturbative completions (AdS2 and dS2 seem be dual to
different such completions)
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The dictionary

Quantum gravity Matrix model Boundary dual
Liouville potential µ e2φ Inverted oscillator potential -
Cosmological constant µ Chemical potential −µ IR mass gap µ
D0 particle (φ: D, X: N) Matrix eigenvalue λi Energy eigenvalue Ei

Boundary: Sbdy = µB
∮
eφ Loop operator: 〈Tr log[z− λ]〉 Microcanonical 〈ρdual(E)〉

Bdy. cosm. const. µB Loop parameter z Energy E
fixed size bdy ` = eφ0 Loop length ` Inv. temperature β

WdW wavefunction Ψ(`) Fixed size loop oper. 〈M1(`)〉 Partition func. Zdual(β)
Third quantised vacuum Fermi sea of eigenvalues -

Closed surfaces Fermionic density quanta -
S-matrix of universes S-matrix of density quanta -
Two boundaries: `1,2 Loop correlator 〈M2(`1, `2)〉 SFF: `1,2 = β ± it
Two boundaries: µ1,2

B Density corr. 〈ρ(λ1)ρ(λ2)〉 DOS. correlator

• The missing entries either do not have an interpretation or we do not
understand it yet

• For example a single boundary dual does not seem to capture the
complete "3rd quantised Hilbert space", where we can have
multiboundary configurations
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Higher Dimensions ?
• It is hard to extrapolate our findings and comments in higher dimensions
(d > 3)

• All the models so far are in 2d where they can also be interpreted as
string theories of a certain kind and gravity is rather trivial

• The boundaries are introduced by studying correlators of the matrix
theories

• Define analogous operators that create higher dimensional surface
boundaries?

• BUConjecture by [McNamara - Vafa] (based on WG - Swampland
conjectures and work by [Maxfield - Marolf] ) ⇒ Higher dimensional
theories (d > 3) are fundamentally different: HBU is trivial

• But still: What about AdS wormhole solutions in higher d?
[Maldacena-Maoz]
Discard them?[Arkani-Hamed - Orgera - Polchinski]
Interacting QFT’s? [Betzios - Kiritsis - O. P.]
Refinement of Holography?
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Future

• Study more refined observables (correlators of boundary operators)
• Study the non-singlet sector of MQM [Maldacena, Gaiotto, Betzios-O.P]

• Study other models such as WZW cosets

• Compute amplitudes for processes in superspace, (universes branching off
etc...)

• It has been argued that the non-perturbative effects in JT gravity are
doubly non-perturbative i.e. e−c/gs ∼ e−ceS0

• Here this expansion is governed by e−cµ effects that do not seem to have
such a doubly non-perturbative structure from the MQM point of view

• A doubly non-perturbative structure might arise again if µ admits a more
microscopic description in terms of the putative boundary dual theory...

• What is the bulk origin of doubly layered expansions?
• Idea: Geometries inside geometries ⇒ two different genus expansions:
both in target space and on the worldsheet
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Thank you!
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