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Intro and motivations



The growth of the bridge: gravitational collapse

The growth of Einstein-Rosen bridge continues far beyond the
thermalisation time: Entanglement is not enough!

Susskind 1411.0690



The growth of the bridge: eternal BH

Thermofield double state

|ΨTFD〉 ∝
∑
n

e−Enβ/2−iEn(tL+tR)|En〉R |En〉L .



Holographic conjectures

CV ∼
Max(V )

G L
, CA =

S
π~

dC

dt
∼ T S



Quantum complexity

Complexity is heuristically defined as the minimum number of
simple unitary operations required to reach a given state from a

reference state

Example: a system of n qubits
• Simple state |0〉 = |00000 . . . 〉
• Generic state |ψ〉 =

∑2n
i=1 αi |i〉

• Simple operation: act on 2 qubits



Time evolution of complexity

Susskind, 1507.02287



Nielsen’s complexity geometry

For n qubits, U ∈ SU(2n)

U̇(t) = −iH(t)U(t) , H = H IOI

Cost function: l =
∫
dtF (t)

Which norm for complexity?

F2 =

√∑
I

(H I )2

Gives bi-invariant metric on U

dF2 ≤ π2

Does not scale exponentially with n



The taxicab metric

F1 =
∑
I

|H I |

Better suited, but uncomfortable to deal with (Finsler geometry)



Hyperbolic space acts as a taxicab

cosh sh = cosh2(s1)

Interpolates between L2 norm (small distances, sh =
√
2s1) and

taxicab (large distances, sh = 2s1)



Precursors and switchback

W is a simple operator with O(1) complexity

W (t) = U(t)W U†(t)

Complexity of precursor

C(W (t)) ≈ 2K (t − t∗)



Precursors and negative curvature

Brown, Susskind, Zhao, 1608.02612



Motivations for negative curvature

1. To get exponential complexity in n, we should suppress
shortcuts (and taxicab geometry does it!)

2. Switchback effect

3. Ergodicity of geodesics (Anosov)



Geometry of unitaries
complexity



L2 norm with penalty factors

l =

∫
dt〈H(t),H(t)〉1/2

〈H,K 〉 =
Tr (H G(K ))

2n

For superoperator G not proportional to identity, it defines a
right-invariant metric on the space of unitaries

We consider the case of n qubits, U ∈ SU(2n).
Generalised Pauli matrices σ

〈σ, τ〉 = qσδστ , penalty factor qσ



Sectional curvatures

Right invariant metric on group manifold, (Arnold, Milnor)

Sectional curvatures vanish if [ρ, σ] = 0, otherwise:

K (ρ , σ) =
1

qρ qσ

[
−3 q[ρ ,σ] + 2 (qρ + qσ) +

(qρ − qσ)2

q[ρ ,σ]

]

Negative curvature is associated to directions such that

[easy , easy] = hard

Scalar curvature

R =
∑
σ, ρ

K (ρ , σ)



One qubit

Kxy<0

Kxz<0

Kyz<0
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Many qubits: Draconian

q(w) = 1 , w ≤ 2 P
q(w) = q , w > 2 Q

Dowling, Nielsen, quant-ph/0701004



Curvatures for Draconian Penalties

R ≈ −55qn3 +
16n

2q

In order to have negative R , q ≈ 4n

[ρ , σ] ∈ P [ρ , σ] ∈ Q
ρ, σ ∈ P K = 1 K = 4− 3q
ρ, σ ∈ Q K = 4 q−3

q2 K = 1
q

ρ ∈ P, σ ∈ Q K = q K = 1
q2

Singular in negative curvature region!



Many qubits: Progressive

q(w) = αw−1 ,

At large α, sectional curvatures scale as

K = constant + O(α−1) .



Progressive penalties at large α

K = 1 N+ ≈ 12 7n−1n

K = −3 N− =
N+

2
− 3n

R = 3n
(
4n − 2 7n−1) .

We can have negative R with non singular sectional curvatures !

Number of sectional curvatures scales as η ≈ 16n

Average sectional curvature is small at large n and α:

K̄ =
R

η
≈ −6

7
n

(
7
16

)n

+
1
α

9
4n

n(n − 1)

2
.



Progressive penalties, generic α
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The exact value of R/η plotted as a function of α in the case of
progressive penalties, for n = 5, 10, 15, 20. The minimum in the

picture appears for n ≥ 8.



States complexity



Unitary vs state complexity

So far we discussed, following Nielsen’s idea, complexity defined for
operators. The complexity metric was a right-invariant metric on

the Lie group

M = SU(2n)

For holographic applications we would like to define complexity for
states

B = CP2n−1 =
SU(2n)

SU(2n − 1)× U(1)
.

How are these two notions of complexity related ?



Single qubit: Bloch sphere CP1

qσx = qσy = 1 , qσz = P ,
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Submersions (O’Neill)

π : M → B with:

1. maximal rank
2. π∗ preserves length of horizontal vectors (horizontal vectors

are the ones orthogonal to the fiber π−1(x))



Submersion, curvatures and geodesics

O’Neill formula

KS(h̃1, h̃2) = K (h1, h2) +
3
4

|V([h1, h2])|2

|h1|2|h2|2 − 〈h1, h2〉2
,

Relates sectional curvatures for states to the ones of unitaries

The extra contribution is always positive-definite (so curvature for
states is always less negative compared to unitaries)

Geodesics in the state space B can be found projecting horizontal
geodesics from the unitaries space M (result by O’Neill, 1967)



O’Neill formula for one qubit example

Comparison of KS(h̃1, h̃2), K (h1, h2) and ∆K as a function of
(θ, φ). P = 6, Q = 3.



States metric

Closed-form expression for states metric

ds2
S = (M̃ij − M̃icM̃

−1
ca M̃aj)uiuj .

M̃lm = Mrs(Ad
U†
θ
)rl(Ad

U†
θ
)sm ,

us = −i Tr
{
U†θdUθωs

}
A bit cumbersome... we applied to one qutrit case



One qutrit

R for one qutrit state space CP2, with penalty factors P applied to
all the generators of the unbroken subgroup.



Towards exponential
complexity



Towards exponential complexity

Both in unitaries and in state space, holographic expectations
requires that maximal complexity scales exponentially with the

number of states

This is not true for uniform penalties qσ = 1:
• Bi-invariant metric for unitaries (SU(2n) for n qubits)
• Fubini-Study metric for states (CP2n−1 for n qubits)

Can we prove that complexity scales exponentially with number of
qubits, at least for opportune choice of penalties?



Cut point

Cut point: consider a geodesic starting from P. For short enough
distances, the geodesic is the minimal path. A cut point is defined
as a point after which the geodesic is no longer the minimal path.



Conjugate points

Conjugate points: these are two points P and Q along a geodesic
for which it exists a continuous 1-parameter family of geodesics

connecting them.

A geodesic fails to be minimising after its first conjugate point. But
it might well fail to be minimising before it...



Congruence of geodesics

Congruence of geodesics, orthogonal to hypersurfaces Σ

uαuα = 1 , ξαuα = 0 , gαβ = hαβ + uαuβ



Conjugate points and Raychaudhury eq

Bαβ = Dβuα =
1

d − 1
Θhαβ + σαβ

Expansion scalar Θ→ −∞ detects conjugate points

Θ =
1

∆V

d∆V

dλ

Raychaudhury eq:

dΘ

dλ
= − 1

d − 1
Θ2 − σαβσαβ − Rαβu

αuβ ,



Exponential geodesics

From Euler-Arnold eq

Ẋ + iG−1 ([X ,G(X )]) = 0 .

we find that the exponential of an eigenvector of penalty matrix G
gives a simple class of geodesics (for unitaries)

Some of these geodesics are horizontal, and give a geodesic also for
states

λc ≤ λ0 =
π
√
d − 1√

Rαβuαub
.

Using Raychaudhury eq, we can estimate conjugate points



1 qubit case: unitaries

Example of an exact conjugate point (the black spot) of geodesics
for P = Q = 0.4 in stereographic projection.



1 qubit case: states

λ = 2.5, Q = 10, P = 10.

The maximal complexity region lies just before the conjugate point



Large n: bi-invariant metric

In every direction in unitary space, there is a conjugate point before

λ0 = θ0 ≈ π
√
2 .

Exponential of eigenvector of penalties remain geodesic also with
arbitrary values of penalties

We call θ the length of the corresponding path measured with the
bi-invariant metric



Large n: Draconian penalties

q ≈ 4n

Conjugate points of exponential geodesic, as a function of weight

w = 1 , λ0 ≈
π2n√
6n

, θ0 = λ0 ,

w = 3 , λ0 ≈
π2n√
12q
≈ π√

12
, θ0 =

λ0√
q
≈ 1

2n
π√
12
,

w ≥ 4 , λ0 ≈ π
√

2q ≈
√
2π 2n , θ0 =

λ0√
q
≈
√
2π ,



Large n: Progressive penalties

Conjugate points for w = 1 and for w > 2
3(n + 1)

For w = n

λ0 =
π 2n/2√

n
, θ0 =

λ0

αn/2 =
π 2n/2√
nαn/2 .

For w ≈ 2
3n

λ0 =
π 22n/3
√
n

, θ0 =
λ0

αn/3 =
π 22n/3
√
nαn/3 .



Exponential complexity for progressive penalties

At largish α > 4 the conjugate points are at small θ

A conjugate point at small θ is likely also a cut point (shortcuts
usually are "non-perturbative", it is difficult to imagine a non-trivial

shortcut at small θ)

λmax =
π 22n/3
√
n

, (1)

This is a strong indication of an exponential maximal complexity

Using the trick of projecting w = n geodesic to states (it is
horizontal!), this applies also to state complexity



Summary

We studied a few aspects of Nielsen’s complexity geometry in
quantum mechanics:

• Curvatures for large number of qubits for progressive penalties.
Negative average sectional curvature can be achieved in a
non-singular way.

• Relation between Unitary and States geometry, using the tool
of Riemannian Submersions

• Evidence that maximal complexity scales exponentially with
the number of qubits, by studying conjugate points of a simple
class of geodesics



Many open questions

• How does maximal complexity scales with number of qubits,
given some choice of penalties? How is this related to negative
curvature?

• Precursor operators and switchback effect
• Mixed states complexity
• Complexity in SYK model ?
• Complexity in QFT ?



Thank you!


