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The Standard Model of Particle Physics

Microscopic model, a renormalizable quantum field theory.



Consider the 2012 Higgs Boson Discovery @ LHC

Decades of experimental and theoretical work to produce e.g.
ATLAS Collaboration, Phys. Lett. B716 (2012) 1

On the theory side, predict (as a function of s and Mh):

1. How many Higgs bosons are produced?

2. What are the measurable decay modes of the Higgs?

3. What other interactions mimic these Higgs events?



Cross Sections in the Standard Model

For simplicity, focus on Higgs production. How do I estimate
the total number of Higgs bosons I expect to produce after
running the LHC for a fixed amount of time?

1. Calculate the cross section, σ, or the probability that the
colliding protons produce a Higgs boson per unit time,
divided by the particle flux density of the LHC.

2. The integrated luminosity,
∫

Ldt, is the particle flux density
integrated over the time of data acquisition.

3. The number of events in the sample is then σ
∫

Ldt.

Cross section calculations in the Standard Model are key!



Technical Complications of Perturbative Calculations

Beyond leading order, severe technical complications for M

M(q(p1)q̄(p2)→µ(p3)µ̄(p4)) = + + · · ·
γ

g
γ

I Feynman diagrams which contain loops lead to ill-defined
integrals over the four-momenta of virtual quanta.

I Only ultraviolet divergences coming from large values of
the loop momenta are subject to renormalization.

I For remaining infrared divergences, add higher-multiplicity
scattering processes at the same relative order in αs, e.g.

M(q(p1)q̄(p2)→µ(p3)µ̄(p4)g(k)) = + + · · ·
γ γ

g

g

Need consistent manipulations of divergent integrals!



Outline

The Big Picture

Fundamental Large Hadron Collider Processes
Strong Corrections to Gluon-Fusion Higgs Production
Strong Corrections to Drell-Yan Lepton Production

Efficient Computer Algebra for Multi-Loop Calculations

Computing, Scientific Software, and Machine Learning

Summary



Gluon-Fusion Higgs and Drell-Yan Lepton Production

g

g

h
t

=⇒ h

g

g

Surprisingly, the most important source of Higgs bosons @ LHC.
Georgi et. al., Phys. Rev. Lett. 40 (1978) 692

γ
=⇒ γ

Clean experimentally, very useful to constrain the probability of
finding a quark or gluon of a specified energy inside the proton.
Drell and Yan, Phys. Rev. Lett. 25 (1970) 316



First Higgs and Drell-Yan Predictions At O
(
α3
s

)
C. Anastasiou et. al., Phys. Lett. B737 (2014) 325;

Y. Li, A. von Manteuffel, RMS, and H. X. Zhu, Phys. Rev. D91 (2015) 036008

lim
ŝ→M2

i

{
∆σ̂N3LO

i

}
= HiSi, where i = h or γ

Hi hard, effects due to virtual quanta: γ

Si soft, effects due to real radiation, soft to first approximation:

γ γ γ

Y. Li, A. von Manteuffel, RMS, and H. X. Zhu, Phys. Rev. D90 (2014) 053006
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What About (Unprecedented) O
(
α4
s

)
Predictions?

By studying the O
(
α3
s

)
virtual amplitudes, graphs like e.g.

h γ

it became clear that a new line of attack would be needed for
the explicit evaluation of the basis integrals order-by-order in ε.

1. At O
(
α3
s

)
, 8 complicated basis integrals in the traditional

approach; well over 100 hard(er) ones at O
(
α4
s

)
.

2. Generic basis integrals at O
(
α4
s

)
can have, at worst, ε−8

poles; challenging to extract in an efficient way.

3. After making all ε poles explicit, no obvious way to
evaluate the resulting convergent integrals.
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Finite Integral Bases For Virtual Corrections

Andreas von Manteuffel, Erik Panzer, and RMS, JHEP 1502 (2015) 120;

Phys. Rev. D93 (2016), 125014; RMS Phys. Rev. D99 (2019), 105010

We proved it is always possible to pick finite basis integrals!

I Finiteness can be achieved by adjusting the spacetime
dimension and the denominator exponents:∫

d4−2εk

(p1 − k)2(p2 + k)2
−→

∫
d6−2εk

[(p1 − k)2]2 [(p2 + k)2]2

I Fully-systematic and effective way to resolve ε poles.

I In many cases, a generic integration algorithm even exists!

I I constructed first non-trivial examples of finite integrals:

1

N

∫
d6−2εk

[(p1 − k)2]2 [(p2 + k)2]2
=
[
−(p1 + p2)2

]−1−ε
(

1+ ε+2ε2 + · · ·
)
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Towards Virtual Higgs and Drell-Yan @ O
(
α4
s

)
S.-O. Moch et. al., JHEP 10 (2017) 041; Phys. Lett. B782 (2018) 627

J. M. Henn et. al., JHEP 04 (2020) 018

A. von Manteuffel, E. Panzer, and RMS, Phys. Rev. Lett. 124 (2020), 162001

We have taken the first decisive steps towards the calculation of
the virtual Drell-Yan and Higgs cross sections at O

(
α4
s

)
!
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The quark and gluon cusp anomalous dimensions improve the
O
(
α3
s

)
predictions for Higgs and Drell-Yan by allowing for full

N3LL resummation, and we have already obtained further new
analytic results for the O

(
α4
s

)
virtual corrections.
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Main Weakness of the Traditional Setup

Too many hard Feynman integrals are produced!

F. Tkachov, Phys. Lett. B100 (1981) 65; K. Chetyrkin and F. Tkachov, Nucl. Phys. B192 (1981) 159

Integration by parts reduction to a basis of Feynman integrals

I The number of Feynman diagrams gets large at O
(
α3
s

)
and

introduces a large number of complicated integrals.

I Proceed by systematically applying Stokes’s theorem to
generate all possible linear relations between integrals.
Subsequently, reduce to a basis set using linear algebra.

I The typical size of the linear systems at O
(
α3
s

)
causes

problems in practice, due to intermediate expression swell.
S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087

Running the best program available at the time, Reduze 2,
took me of the order of weeks and required GBs of RAM.
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Solution: Finite Fields and Rational Reconstruction
A. von Manteuffel and RMS, Phys. Lett. B744 (2015) 101

By discussing with mathematicians, I developed a new
integration by parts reduction algorithm, with polynomial

run-time complexity in the size of the linear system to be solved!

AQ

AZp1

AZp2

AZpn

standard row reduction

finite field row reductions

KZp1 KZp2

KZpn

KQ

KZm

m = p1 · · · pn

(seconds)

(weeks)



Impact: Full Higgs and Drell-Yan Predictions at O
(
α3
s

)
B. Mistlberger, JHEP 1805 (2018) 028

LO NLO

NNLO N3LO

30 50 70 90 110 130 150 170 190 210 230 250

10

20

30

40

50

μ [GeV]

σ
[p
b
]

LHC 13 TeV

PDF4LHC15.0

P P -> H+X

C. Duhr et. al., Phys. Rev. Lett. 125 (2020) 17, 172001
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My integration by parts algorithm enabled this progress!



Towards Tri-Jet Production at O
(
α2
s

)
M(g(p1)g(p2)→g(p3)g(p4)g(p5)) = + + +· · ·

RNLO =
1 + ∆σNLOαs + ∆σN2LOα2

s + · · ·
1 + ∆σNLOαs + · · · = 1 + ∆σN2LOα2

s + · · ·

I Once available, an important constraint on αs.

I Depends on 5 kinematical invariants, si i+1 = (pi + pi+1)2.

I Virtual cross section very hard, leading groups rely on finite
fields and rational reconstruction for the integral reduction!

S. Badger et. al., Phys. Rev. Lett. 123 (2019) 071601; S. Abreu et. al., JHEP 1905 (2019) 084

Machinery implemented in FiniteFlow, Fire 6, and Kira 2!
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Mixed Electroweak-QCD Drell-Yan Amplitudes
Z

g
Z

Andreas von Manteuffel and RMS, JHEP 1704 (2017) 129

M. Heller, A. von Manteuffel, and RMS, Phys. Rev. D102 (2020), 016025

M. Heller, A. von Manteuffel, RMS, and Hubert Spiesberger, arXiv:2012.05918

I Besides the concrete results we obtained in terms of
well-understood mathematical functions, I achieved a
major conceptual breakthrough by understanding for the
first time the precise relationship between Kreimer’s γ5

scheme and the standard HVBM γ5 scheme.

I Due to the fact that there are no finite counterterms
required for the restoration of chiral symmetry in Kreimer’s
γ5 scheme, our work suggests a far simpler automation of
O (αsα) or O

(
α2
)

Feynman diagram calculations!

D. Kreimer, Phys. Lett. B237 (1990), 59
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How Does This Work at the Practical Level?

I At each order in perturbation theory, I envisaged to
generate the Standard Model diagrams of interest with
QGraf and then pipe them through Reduze 2 in order to
match them onto suitable integral families.

I To accommodate the general case, I modified Reduze 2,
adding my own fully-general C++ routine to partial fraction
power products of propagator denominators with the same
momentum but different masses, e.g. (k2 −m2

z)
−1(k2)−1:

γ

Z
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High-Performance Computing

I Performed numerator algebra in Mathematica for ∼ 50, 000
multi-loop diagrams for projects using high-performance
computing clusters available at JGU and MSU.

I At various times, needed to do scripting in Bash and
become familiar with scheduling in both LSF and Slurm.

I Despite the infinite licenses available at many research
institutions, Mathematica is closed-source, so it is
reasonable to wonder whether it makes sense to employ it.
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Dealing With Mathematica Bugs

Turn a setback into an opportunity to improve the code!

I In Mathematica v10.3.1, Apart[#,x1]& would fail on
“complicated” inputs such as:

x2(d x1 + t)3((x1 + t)x2 + x22(x1 + d + x21))
2

x3(t x1 + (x2 + x3 + 1))4((−s x3)x1 − t x2)5(x3 + x2 + x1x2)3

I With a little effort, I was able to generalize the approach to
univariate partial fractioning discussed by Erik Panzer in
his thesis and arrive at an implementation far superior to
the one available in even the latest version of Mathematica.

I Principally, this was possible by making a more intelligent
choice about how to organize the output; in v12.0.0, the
output of Apart has a ByteCount of 3613880, whereas my
replacement has a ByteCount of only 660776.
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Machine Learning

I Studying for 8 weeks (virtually) at The Data Incubator.

I In the first two weeks alone, we have covered Python-based
web app development (managing html with Flask on
Heroku), as well as networkx, nltk, sklearn, and spacy.

I Will eventually cover Spark, SQL, TensorFlow, and details
of the most widely-used machine learning techniques.

I Besides the well-known applications of machine learning to
particle physics phenomenology, I would like to see if I can
develop a custom scheduler to serve the pheno group’s
high-performance computing needs in an optimal way.
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The Bottom Line

I Groundbreaking work on fundamental LHC processes
requires new techniques and dedicated effort.

I First ab initio analytic calculation of the cusp anomalous
dimensions and first analytic calculation of the collinear
anomalous dimensions done; finite parts of four-loop quark
and gluon form factors calculable in current setup with
known methods and modest computing resources.

I Important conceptual and technical progress on EW-QCD
Drell-Yan; virtual cross sections now within reach.

I Massively-parallel integration by parts algorithm I
pioneered applicable to many hard calculations of current
interest. In fact, for most processes discussed in this talk,
no other methods have produced comparable results.

I Machine learning algorithms will become ever more
important to particle physics. Exciting to see what is next!
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