Theoretical calculations for phenomenology at the LHC

Mathieu PELLEN

University of Freiburg

Group Leader Position at the Max Planck Institute for Physics Max Planck Institute for Physics, Germany

26th of January 2021

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Outline:

Physics results

source: ATLAS

• Tools to obtain these results

source: www.nist.gov

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Exploring the Electroweak sector of the Standard Model

- pp $\rightarrow W^{\pm} + j_{\rm c}$ @ NNLO QCD
- $\bullet~pp \rightarrow W^+W^-j$ @ NLO QCD+EW with parton shower
- pp $\rightarrow W^{\pm}W^{\pm}jj$ @ full NLO

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

1) $pp \rightarrow W^{\pm} + j_{\rm c}$ @ NNLO QCD

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

1) $pp \rightarrow W^{\pm} + j_c$ 0 NNLO QCD

- Direct link between W+c measurements and strange PDF
- Study of flavour jets [Banfi, Salam, Zanderighi; hep-ph/0601139]

▲ First NNLO QCD computation of W+c-jet

[Czakon, Mitov, MP, Poncelet; 2011.01011]

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

1) pp \rightarrow W[±] + j_c @ NNLO QCD

- ▲ PDF uncertainty dominant
- Potential to improve understanding of strange within proton: \rightarrow Strange asymmetry / Global PDF fit

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

2) pp \rightarrow W⁺W⁻j **0** NLO QCD+EW with parton shower

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

2) pp \rightarrow W⁺W⁻j **O** NLO QCD+EW with parton shower

- Motivated by ATLAS measurement [1608.03086]
- Search for anomalous triple gauge-boson couplings
- Complementary to di-boson measurements
 Similar effect with different kinematic

|--|

Theoretical calculations for phenomenology at the LHC

2) pp \rightarrow W⁺W⁻j **0** NLO QCD+EW with parton shower

[Bräuer, Denner, MP, Schönherr, Schumann; 2011.01011]

- Inclusion of EW effects in NLO+Parton Shower simulation
- Typical EW Sudakov logarithms

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

2) pp \rightarrow W⁺W⁻j **O** NLO QCD+EW with parton shower

[Bräuer, Denner, MP, Schönherr, Schumann; 2011.01011]

- Use of ratios WWj/WW
 - \rightarrow WW known up to NNLO + PS [Re, Wiesemann, Zanderighi; 1805.09857]
 - \rightarrow Cancellation of uncertainties
 - \rightarrow Sensitive probe of the Standard Model

```
Mathieu PELLEN
```

Theoretical calculations for phenomenology at the LHC

3) pp $\rightarrow W^{\pm}W^{\pm}$ jj **0** full NLO

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

3) pp $\rightarrow W^{\pm}W^{\pm}jj$ 0 full NLO

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

3) pp $\rightarrow W^{\pm}W^{\pm}$ jj $\mathbf{0}$ full NLO

3) pp $\rightarrow W^{\pm}W^{\pm}$ jj **0** full NLO

[Biedermann, Denner, MP; 1708.00268]

Different LO and NLO behaviours A Large EW corrections

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

11 / 22

2000

3) pp $\rightarrow W^{\pm}W^{\pm}jj$ **0** full NLO

 $\rightarrow \mathcal{O}(\alpha^7)$ reproduced by Leading-Log approximation

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

- C^{ew} larger for bosons than fermions
- $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302])

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

[Biedermann, Denner, MP; 1611.02951]

• Sensitive to EW corrections at High-Luminosity LHC

```
Mathieu PELLEN
```

Theoretical calculations for phenomenology at the LHC

At the core of this work: Development of methods and tools

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

At the core of this work: Development of methods and tools

- All LHC results are obtained with computer programs!
- All cutting edge computations requires huge CPU resources
- Automation necessary to cover all LHC physics
- Programs are a way to communicate results
 → Golden standard: automatised and public tools!

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

NLO QCD/EW corrections in **POWHEG**

\rightarrow Implementation process by process in POWHEG

[Alioli, Frixione, Ježo, Nason, Oleari, Re; hep-ph/0409146, 0709.2092, 1002.2581, 1509.09071]

1) Squark production and decay at NLO SUSY QCD

[Gavin, Hangst, Krämer, Mühlleitner, MP, Popenda, Spira; 1305.4061, 1407.7971]

2) Same-sign W-boson scattering at NLO EW

[Chiesa, Denner, Lang, MP; 1906.01863]

Work

- Implementation of all partonic/decay channels
- Implementation of necessary pieces
 - \rightarrow Matrix elements, colour-correlated matrix elements, etc.
 - \rightarrow Either own subroutines or automatised code

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

NLO QCD/EW corrections in **POWHEG**

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

NNLO QCD corrections in Stripper

STRIPPER:

Implementation of sector-improved residue subtraction scheme

[Czakon, Heymes, Poncelet; 1005.0274, 1101.0642, 1408.2500]

- \rightarrow General framework for NNLO QCD computations
- \rightarrow As POWHEG, implementation on a process-by-process basis

My work

- Implementation of integration channel
 → mapping of resonance
- Interface with OPENLOOPS2 [Buccioni, et al.; 1907.13071]
- Implementation of two-loop virtual [Gehrmann, Tancredi; 1112.1531]
 - \rightarrow Convention matching with complex expressions
 - \rightarrow Evaluation of harmonic polylogarithms with ...
 - ... GINAC [Bauer, Frink, Kreckel], [Vollinga, Weinzierl; hep-ph/0410259]

→ Outcome: NNLO QCD corrections for W+c-jet

[Czakon, Mitov, MP, Poncelet; 2011.01011]

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Automation of NLO QCD and EW in Sherpa

SHERPA: General multi-purpose Monte Carlo

[Gleisberg, Höche, Krauss, Schönherr, Schälicke, Schumann, Siegert, Winter; hep-ph/0311263, 0811.4622]

[Biedermann, Bräuer, Denner, MP, Schumann, Thompson; 1704.05783]

- General implementation of any NLO corrections
 → also mixed corrections
- Design of interface between Sherpa and Recola \rightarrow C++ \leftrightarrow Fortran

Output

- NLO corrections for any process
- Use all functionalities of SHERPA along with NLO corrections
- Applications:
 → tt̄, ZZ, V + jets [Biedermann, Bräuer, Denner, MP, Schumann, Thompson; 1704.05783]
 3-jets [Reyer, Schönherr, Schumann; 1902.01763], tri-bosons [Reyer, Schönherr, Schumann;
 1806.00307], WW/WWj [Bräuer, Denner, MP, Schönherr, Schumann; 2011.01011]

```
Mathieu PELLEN
```

Theoretical calculations for phenomenology at the LHC

NLO QCD corrections in MadGraph5_aMC@NLO

→ Automation NLO QCD for Dark-Matter simplified models [Backovic, Krämer, Maltoni, Martini, Mawatari, MP; 1508.05327] Dol chain FEYNRULES [Alloul et al.; 1310.1921] NLOCT [Degrande; 1406.3030] FEYNARTS [Hahn; hep-ph/0012260] → NLO QCD UFO files [Degrande et al.; 1108.2040]: DMSIMP → Can be used for any process in MG5_AMC [Alwall et al.; 1405.0301] → Used extensively by both communities: Experiment: for all Dark-Matter searches in ATLAS and CMS Theory: [Haisch, Kablhoefer, Tait; 1603.01267], [Asadi et al.; 1603.01267], ...

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Development of MoCaNLO - past

MOCANLO: <u>Monte Ca</u>rlo event generator for <u>NLO</u> calculations of hadron-collider processes

 \rightarrow Multi-channel Monte Carlo written by Robert Feger

My work

Make it more general

- NLO EW corrections \rightarrow Treatment of mixed QCD-EW corrections
- Pole approximation at NLO QCD/EW
 → non-factorisable corrections
- Performance improvements
- Further automation of the code
- \rightarrow Efficient for high-multiplicity processes (2 \rightarrow 6 and beyond)

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Development of MoCaNLO - future

[Denner, Lang, MP; 2008.00918]

Plan: Make it better and even more general

- Implementation of FKS subtraction [Frixione, Kunszt, Signer; hep-ph/9512328]
- Matching to parton shower
 → mixed QCD-EW corrections
- Usable for new physics models
- Making it public!

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Partial summary

Focus

- Implementation of higher-order corrections
- Development of Monte Carlo programs

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Partial summary

Focus

- Implementation of higher-order corrections
- Development of Monte Carlo programs

Skills

- Knowledge of several programming languages
- Experience in using HEP tools
- Intensive use of High-performance computing
- Experience in maintaining codes

Theoretical calculations for phenomenology at the LHC

Partial summary

Focus

- Implementation of higher-order corrections
- Development of Monte Carlo programs

Skills

- Knowledge of several programming languages
- Experience in using HEP tools
- Intensive use of High-performance computing
- Experience in maintaining codes
- \rightarrow Research mainly focused on LHC physics but ...
- ... tools can be used in other fields e.g. Astroparticle physics
- [Ali Cavasonza, Krämer, MP; 1409.8226], [Ali Cavasonza, Gast, Krämer, MP, Schael; 1612.06634]
- ... also interest in numerical general relativity

[Di Menza, Nicolas, **MP**; 1903.02941]

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

General summary

Theoretical calculations for phenomenology at the LHC

- Exploring the Electroweak sector of the Standard Model
 → several examples of recent computations
- Development of methods and tools for LHC phenomenology
 → several examples of tools developed

Theoretical calculations for phenomenology at the LHC

General summary

Theoretical calculations for phenomenology at the LHC

- Exploring the Electroweak sector of the Standard Model
 → several examples of recent computations
- Development of methods and tools for LHC phenomenology
 → several examples of tools developed

Thank you

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC

Back-up slides

BACK-UP

Mathieu PELLEN

Theoretical calculations for phenomenology at the LHC