Search for charged Higgs bosons in $H^+ \rightarrow Wh \rightarrow l\nu bb$ decays within a resolved event topology using the ATLAS detector

Simon Grewe, supervised by Dominik Duda

Max-Planck-Institut für Physik

DPG-Frühjahrstagung 2021

18.03.2021

MAX-PLANCK-INSTITUT FÜR PHYSIK

Motivation

- Several extensions of the SM predict an extended Higgs sector
 - The Higgs sector of a MSSM is a Type-2 Two Higgs Doublet model (2HDM)
- Models with additional Higgs doublets or triplets predict electrically charged scalars H⁺
- Decay $H^+ \rightarrow Wh$ (h=125 GeV SM-like Higgs) is so far not explored by ATLAS and CMS searches
 - $H^+ \rightarrow tb \text{ or } H^+ \rightarrow \tau \nu$ is thought to be the main decay mode for a heavy charged Higgs boson $[m(H^+)>m(t)+m(b)]$
 - However $H^+ \rightarrow Wh$ becomes more important in some models
- Significant BR($H^+ \rightarrow Wh$) for:
 - N2HDM [<u>https://arxiv.org/abs/1910.06858</u>]
 - Georgi-Machacek model [https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.015029]
 - 2HDM scenarios in which the 125GeV Higgs boson is the heaviest CP-even scalar

2HDM

- 2 Higgs doublets
- Particles:
 - 2 CP-Even Higgs bosons h, H
 - 1 Pseudoscalar A
 - 2 Charged Higgs bosons
- $\tan(\beta) = \left(\frac{v_1}{v_2}\right)$
- α mixing angle between h H
 - $\sin(\beta \alpha) \rightarrow 1$ (light Higgs boson SM-like)
 - $\sin(\beta \alpha)$ ->0(heavy Higgs boson SM-ľike)

N2HDM

- 2 Higgs doublets + singlet
- Particles:
 - 3 CP-Even Higgs bosons
 - 1 Pseudoscalar A
 - 2 Charged Higgs bosons

Mass=2000GeV $tan(\beta)=1$

0.6

0.5

0.4

0.3

0.2

0.1

1.5

 α_1

• 3 Mixing angles: $\alpha_1, \alpha_2, \alpha_3$

•
$$\tan(\beta) = \left(\frac{v_1}{v_2}\right)$$

_{ని} 1.5

0.5

-0.5

-1.5

-1.5

-1

-0.5

BR calculated with N2HDECAY

0

0.5

Georgi-Machacek

- Additional real and complex Higgs triplet
- Particles:
 - Fiveplet states:
 - $H_5^{++} \setminus H_5^{--}, H_5^{+-} \setminus H_5^{--}, H_5^{---}$
 - Triplet states:
 - $H_3^+ \setminus H_3^-, H_3$
 - Singlet states: • h, H

Analysis Strategy

- Charged Higgs boson is produced in association with t and b
- Charged Higgs boson decay mode: $H^+ \rightarrow Wh \rightarrow Ivbb$
 - Consider only events with one Lepton
 - Top quark decays fully hadronic: t \rightarrow Wb \rightarrow qqb
 - Multiple jets in the final state
 - 6 or more
 - 4 b tagged
 - MET
- Challenge: reconstruct charged Higgs boson (mass)
 - Reconstruct $H^{\scriptscriptstyle +}$ from W and h
 - Reconstruct W from lepton and MET
 - Neutrino is reconstructed from Missing Transverse Energy using W boson mass constrain technique
 - Reconstruct h from 2 Jets
 - Which 2 jets stem from h?
 - Use boosted decision trees (BDTs) to choose the correct combination of a W boson with two jets from the h decay
 - Select the W di-jet combination with highest BDT score
- Hadronic decaying W: $H^+ \rightarrow Wh \rightarrow qqbb \frac{T59.8}{D9.8}$ by Shubham Bansal
- Merged event topology: <u>T87.3</u> by Patrick Bongratz

BDT Training and Parameters

- Boosted Decision Trees provided by TMVA Root package were used
- Signal: correct jet pair and lepton neutrino combination of the tbH+ events
 - (the jet pair that is closest in dR to the truth Higgs boson is chosen, but dR<0.3 is required)
- Background: All the wrong combination
- Trained on 3 charged Higgs boson mass points
 - 400 GeV, 800 GeV, 1600 GeV

- Trained on:
- Higgs Mass, Pseudo continuous b-tag score of Higgs jets, Azimuthal angle $\Delta \Phi$ between Higgs and W candidate, p_{THiggs}/m_{hW}, P_{TW}/m_{hW} 4/Nb (N/f Signal ATLAS Simulation Work in Progress Background 0.2 0.8 -02 0.8 0 0.4 BDT response

Mass Resolution

- BDT successfully reconstructs charged Higgs boson
- Calculate $\frac{m_{W+h}^{reco} m_{W+h}^{truth}}{m_{W+h}^{truth}}$
- Fit asymmetric Bukin function to data

0.5

0

- [https://github.com/root-project/root/blob/master/roofit/roofit/src/RooBukinPdf.cxx]
- Take variance

 $\sigma_{res} = 14.0\%$

-0.5

Events

1000

0.5

0

 $\sigma_{res} = 13.0\%$

-0.5

1000

500

 $\sigma_{res} = 14.0\%$

-0.5

0

0.5

400

200

Event Selection

- Categorize events by # b-tags
 - 2 tags
 - 3 tags
 - 4+ tags
- Cut based event selection
 - Compare shapes of different variables
 - Calculate $\frac{\#s}{\sqrt{\#b}}$ for different cut-values to find the optimal one
- BDT not only reconstructs signal but can also distinguish between signal and background

Event Selection

- The region with BDT Response > 0.7 is defined as the signal region
- Find a region where $m_{\rm hW}$ distribution of the SM-background is similar wrt. $m_{\rm hW}$ distribution in the SR
- For most regions in BDT Response this is the case
- Choose the one where the background is most enhanced over the signal

Control Region -0.5<max BDT<0.3 P_T^{Higgs}> 100GeV p_T^W>120 GeV #Jets>5

Data-MC Comparison

- Compare Data vs. MC in 2 b-tag region
 - Low sensitivity for signal
 - No further cuts (like SR/CR)
- Mismodeling is present
 - tt modelling systematic uncertainty
 - Currently under investigation: exploring different event re-weighting methods, checking the impact of pile-up

Conclusion/Next Steps

- $H^+ \rightarrow Wh$ studied for the first time at the LHC
 - Complementary to other H^+ searches e.g $H^+ \rightarrow tb$
- A first strategy for the $H^+ \rightarrow Wh \rightarrow l\nu bb$ channel has been developed
 - Charged Higgs bosons can be reconstructed by means of BDTs
 - Preliminary event selection criteria for the signal and control regions in data are in place
- More signal mass points are being produced
 - Re-train BDT
- Further investigate Data-MC discrepancies
 - Find method to deal with this
- Evaluate the signal sensitivity using the full-scale statistical interpretation framework

BACKUP

Training Results

Event Fraction

0.05

Event Fraction

0.05

#Events in CR

of all Event * Intergral Lenght

	m=400 GeV	m = 800 GeV	m=1600 GeV	Background
$0.0 < Maxw_{BDT} < 0.5$	0.36	0.24	0.32	0.77
$-0.1 < Maxw_{BDT} < 0.5$	0.32	0.21	0.28	0.73
$-0.2 < Maxw_{BDT} < 0.5$	0.28	0.19	0.26	0.699
$0.0 < Maxw_{BDT} < 0.4$	0.30	0.20	0.26	0.75
$-0.1 < Maxw_{BDT} < 0.4$	0.27	0.18	0.23	0.7
$-0.2 < Maxw_{BDT} < 0.4$	0.24	0.16	0.21	0.67
$-0.3 < Maxw_{BDT} < 0.4$	0.21	0.14	0.19	0.63
$0.0 < Maxw_{BDT} < 0.6$	0.42	0.29	0.39	0.8
$-0.1 < Maxw_{BDT} < 0.6$	0.38	0.26	0.35	0.76
$-0.2 < Maxw_{BDT} < 0.6$	0.34	0.23	0.32	0.72
$-1.0 < Maxw_{BDT} < 0.0$	0.05	0.02	0.03	0.43
$-0.5 < Maxw_{BDT} < 0.0$	0.06	0.04	0.06	0.39
$-0.5 < Maxw_{BDT} < 0.3$	0.13	0.09	0.12	0.51
$-0.2 < Maxw_{BDT} < 0.3$	0.19	0.13	0.17	0.62
$-0.3 < Maxw_{BDT} < 0.3$	0.17	0.11	0.15	0.58 13

MC-MC Comparison

- Dominant background from top
- $\bullet\mbox{ m}_{VH}$ background distribution peaks around 400 GeV
- 2-tag region has the least signal Use as validation region

16