

Search for Supersymmetry in Leptonic Final States with the ATLAS Detector

Marian Rendel supervised by Michael Holzbock

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Monday 15th March, 2021

Introduction

- "Light" sleptons (< 1 TeV) may resolve observed muon g - 2 anomaly
- Considered simplified model for slepton (ẽ, µ̃) pair production:
 - Selectrons and smuons degenerate in mass
 - Decay with 100% BR into $\tilde{\chi}^0_1$ (DM candidate) via SM leptons
- Event kinematics governed by $\Delta m = m_{\tilde{\ell}} m_{\tilde{\chi}_1^0}$
- Compressed mass spectra: leptons too soft to trigger on \rightarrow Initial state radiation (ISR) topology allows $_{03/15/202}$ riggering on E_{T}^{miss}

Current exclusions limits

ATL-PHYS-PUB-2020-020

- Current exclusion limits for ẽ, µ̃ set by 2L and soft 2L analysis
- Sensitivity gap for $\Delta m(\tilde{\ell},\tilde{\chi}_1^0)\sim 20\text{--}60~\mathrm{GeV}$
- Goal: improve sensitivity to this gap with re-optimized ISR-based search

Event Preselection

- Events are selected by E^{miss} trigger
- Exactly 2 same flavor opposite sign leptons (e/µ)
- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 200 \ {\rm GeV}$
- ISR topology
 - At least one jet with $\ensuremath{\textit{p}_{\rm T}}\xspace > 30~{\rm GeV}$
 - $\Delta \phi$ (leading jet, $E_{\rm T}^{\rm miss}$) > 2.0
- $\min_i(\Delta \phi(\textit{jet}_i, \textit{E}_{\mathrm{T}}^{\mathrm{miss}})) > 0.4$ to reduce multi-jet background
- Veto events with b-jets to reduce tt
 background
- $p_{\rm T}(\ell) > 10~{\rm GeV}$ to reduce low- $p_{\rm T}$ misidentified leptons
- $\Delta R_{\ell\ell} > 0.75$ to veto close-by leptons (badly modelled in

simulation)

- Background is estimated with Monte Carlo simulation
 - $-t\bar{t}$
 - Diboson
 - $Z \rightarrow \tau \tau$
 - ${\it Z} \rightarrow {\rm ee}/\mu\mu$
 - $W \rightarrow \ell \nu$
 - Other (triboson, single top)
- Background from misidentified leptons is also estimated from Monte Carlo simulation

 Overall good agreement between Data and Monte Carlo

Signal region is optimized using significance

$$Z = \sqrt{2(n \ln[\frac{n(B+\sigma^2)}{B^2+n*\sigma^2}] - \frac{B^2}{\sigma^2} \ln[1 + \frac{\sigma(n-B)}{B(B+\sigma^2)}])}$$

- Benchmark points with $\textit{m}_{\tilde{\ell}} = 150~{
 m GeV}$ and $\Delta \textit{m} = 20/40~{
 m GeV}$
- Following cuts are applied:
 - $\textit{E}_{\rm T}^{\rm miss} > 300~{\rm GeV}$
 - $m_T(\ell_1) > 100 \text{ GeV}$
 - $m_T(\ell_2) > 100 \text{ GeV}$
 - Veto events with $81.2 < m_{\ell\ell} < 101.2~{\rm GeV}$
- Showing N-1 plots in the following slides (all cuts applied except for the cut on the shown variable)

Cut on lepton p_T does not improve sensitivity at all

•
$$m_{\rm T}(\ell) = \sqrt{2 \rho_{\rm T} E_{\rm T}^{\rm miss}(1 - \cos(\Delta \phi))}$$

• Apply $m_T(\ell) > 100$ GeV for both leptons

- Increase preselection cut to ${\it E}_{\rm T}^{\rm miss} > 300~{\rm GeV}$
- Veto Z bosons with $|m_Z m_{\ell\ell}| > 10~{\rm GeV}$

- $m_{T2} = \min_{\boldsymbol{q}_{T}}(\max[m_{T}(\boldsymbol{p}_{T}^{\ell 1}, \boldsymbol{q}_{T}, m_{\chi}), m_{T}(\boldsymbol{p}_{T}^{\ell 2}, \boldsymbol{p}_{T}^{\textit{miss}} \boldsymbol{q}_{T}, m_{\chi})])$ with $m_{\chi} = 100 \text{ GeV}$
- Endpoint of m_{T2} distribution strongly depends on Δm
- Split signal region into multiple bins of size 10 GeV in m_{T2} to enhance sensitivity

Expected limit

- Expected limits approximated using the significance
- Sensitivity up to $m_{\tilde{\ell}}=200~{
 m GeV}$

- Presented search for new physics in final states with two leptons and ISR topology
- Target remaining sensitivity gap for $\Delta m(\tilde{\ell}, \tilde{\chi}^0_1) \sim 20\text{--}60~\mathrm{GeV}$
- Preliminary SR optimization yields sensitivity for slepton masses up to 200 GeV
- Outlook:
 - Use machine-learning techniques to enhance sensitivity
 - Improve fake background estimation via data-driven method