

Commissioning and installation of the new small-diameter Monitored Drift Tube detectors for the phase-1 upgrade of the ATLAS muon spectrometer

Elena VOEVODINA

on behalf of MPI Munich sMDT group

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) DPG-Frühjahrstagungen March 15th-19th, 2021

Talk Overview

Introduction

- ATLAS Muon Spectrometer Phase-1 Upgrade
- New BIS78 sMDT Detector for the ATLAS Muon System
- Overview of the Surface Commissioning Protocol

BIS78 sMDT surface commssioning @CERN

- Gas Leak Test
- Connectivity and Noise Rate Test
- Cosmic-Ray Test

BIS78 sMDT and RPC detectors integration

- Integration Procedure
- Interference Noise Test
- Final Mechanics & Services Installation

Installation & commissioning @ATLAS Cavern

- Sector Preparation
- Installation
- Commissioning

Introduction

Elena Voevodina

ATLAS Muon Spectrometer Phase-I Upgrade

Barrel muon trigger upgrade at $|\eta| < 1.3$:

The Barrel Inner (BI) Upgrade project consists of:

- new triple-Resistive Plate Chamber (t-RPC) -> 276 detectors for the triggering:
- to close acceptance gaps by compensating the potential efficiency loss of the present RPC
- to improve the trigger selectivity
- to increase the redundancy of the muon system
- > new small Monitored Drift Tubes chambers (sMDT) -> 96 detectors for the tracking:
- to replace current MDT chambers and allow for a 3-station RPC trigger
- to increase the tracking rate capability

In 2019/21 (Long shutdown-2) the BIS78 Phase-1 Upgrade project will realize as a pilot for Phase-2:

16 sMDT and 16 t-RPC chambers will install in the barrel-endcap transition region at $1.0 < |\eta| < 1.3$

```
In total: \sim 11000 drift tubes!
```

HISTA BISTA SMDT Detector for ATLAS Muon Spectrometer Phase-I Upgrade

BIS78 project in Phase-1/Run-3 March 2022

16 new muon stations replacing the 16 existing BIS7-8 MDTs. Each station made of:

- one BIS78 sMDT detector
- two t-RPC triplets: BIS7 RPC + BIS8 RPC

Elena Voevodina

ATLAS EXPERIMENT

New small Drift Tube Chamber Technology

The sMDT Technology has been developed since 2008 in order to cope with the expected high background rates at the HL-LHC sMDT baseline parameters

Properties	Current MDT	New sMDT
Tube Diameter	30 mm	15 mm
Number of tube layers	4	8
Operating Gas Mixture	Ar: CO ₂ (93:7)	Ar: CO ₂ (93:7)
Operating Pressure	3 bar	3 bar
Operating HV working point	3070 V	2730 V
Gas gain	$2 imes 10^4$	$2 imes 10^4$
Max. Drift time	~ 720 ns	~ 175 <i>ns</i>
Single tube space resolution	83 ± 2 μm	106±2μm

Main Advantages of the 15 mm Ø sMDT detector:

- 10 times high rate capability with respect to the current MDT detectors, i.e. 8 times lower background detector occupancy
- ✓ 4 times lower electronics dead time (= max. drift time)
- 2 times more tube layers within the same detector volume allowing for additional increase in the muon tracking efficiency
- No aging effects after foreseen integrated luminosity of HL-LHC (even up to 9 C/cm)

See more info in M. Rendel's talk: Construction of new small-diameter Monitored Drift Tube (sMDT) chambers for the HL-LHC upgrade of the ATLAS muon spectrometer

sMDT + RPC BIS78 Validation Tests Protocol @CERN

sMDT QA/QC

- Visual Inspection
- Preparation phase for QC
- Leak Rate Test
- Connectivity & Noise Rate Test
- Cosmic Ray Test

RPC BIS78 QA/QC

- Visual Inspection
- Detector Components Validation:
 - -> Gas gap tightness
 - -> V/A characteristic
 - -> Gap conditioning & stability tests @GIF++
 - -> FE Board Test, etc ...
- Singlet/Triplet Assembly
- Singlet/Triplet Cosmic Ray test

sMDT + RPC BIS78 Integration

- Final Mechanics & Services Installation
- Connectivity & Interference Noise Test
- Final Certification Tests

Final BIS78 Detector Module Installation @P1

BIS78 sMDT surface commissioning @CERN BB5

Elena Voevodina

16 BIS78 sMDT @CERN BB5 facility

8 "A-side" sMDT detectors have been shipped from MPI-Munich to CERN in 2019 year

8 "C-side" sMDT modules have been delivered from the MPI-Munich in 2020 when the storage and test spaces at CERN were available

Assembled sMDT detectors arrived from MPI (Munich) to BB5 facility (CERN, Geneva)

Elena Voevodina

Gas Leak Rate Measurement

Determination of Gas Leak for each Multilayer (ML)

- Detector is pressurized at **3** bar in the operating gas mixture $Ar: CO_2$ (93:7)
- **Pressure measurement** p(t) -> Baratron pressure gauge
- **Temperature measurement** $T(t) \rightarrow 12$ on-chamber sensors
- Duration: > 24 hours

sMDT A02 is under Gas Leak Test

All 16 sMDT chambers fulfilled the stringent leak rate limit!

*All data and results obtained at BB5 facility are verified against measurements in MPI!

DPG-Frühjahrstagungen – Dortmund 2021

MKS Instruments

390HA-00001SP12

Connectivity & Electronics Noise Test

Measurement of the accidental hit rate in each tube with and without high voltage

sMDT setup @CERN BB5: WP = 2730V, P = 3 bar in Ar: CO₂ (93:7)

Average Intrinsic Noise Rate (kHz/tube) $0.35 Noise_i^{ON} < 1 \text{ kHz} \rightarrow ATLAS requirement$ 0.30 CSM1 Data - HV OFF 0.25 CSM1 Data - HV ON 0.20 $\sqrt{Noise_i^{0N}} < 0.15 \text{ kHz} = New sMDT is a low noise detector!$ 0.15

(C2) (C4) (C6)

(A8) (A10) (A12) (A14) (A16)

Movable service rack

Noise Rate Test Summary:

→ <u>"A/C-side" sMDT chambers</u>

Noise Rate (HV OFF) = (63.5 ± 6.2) Hz/tube *Noise Rate (HV ON)* = (102.8 ± 9.7) *Hz/tube* Number of disconnected tubes: 20/5472

(A4) (A6)

0.10

0.05

DPG-Frühighrstagungen – Dortmund 2021

(C8) (C10) (C12) (C14) (C16)

Cosmic Ray Test

Cosmic-ray run to acquire a dataset corresponding to ~1 million cosmic muons through the chamber

sMDT setup @CERN BB5: WP = 2730V, P = 3 bar in Ar: CO₂ (93:7)

 $\sqrt{ Measurement of the maximum drift-time} \rightarrow average sMDT max. drift time is (194.84 \pm 1.05) ns$ At the same operational parameters, maximum drift time for every tube in a chamber should be the same.

Measurement of the single tube resolution \rightarrow average sMDT spacial resolution is (141.7 \pm 6.2)um which is in agreement with the expectation from the test beam measurement with high energy muons.

p. 12

Meas. muon detection efficiency of each tube \rightarrow average efficiency is $(97.4 \pm 0.3)\%$ within the ATLAS requirements The muon efficiency is < 100% because of the efficiency drop close to the tube wall!

16 BIS78 sMDT status @CERN

Typical validation test rate: 1 fully validated chamber per 3 days!

ID Chamber	Visual Inspection	Gas Leak Rate Test	Connectivity & Electronic Noise Test	Cosmic Ray Test
A02	Validated -	Validated -	Validated -	Validated 👻
A04	Validated -	Validated -	Validated -	Validated 👻
A06	Validated -	Validated -	Validated -	Validated 👻
A08	Validated	Validated -	Validated -	Validated 👻
A10	Validated	ilidated -	Validated -	Validated 👻
A12	Validated		Validated 🔹	Validated -
A14	Validate	MDI -	and a second	Validated 👻
A16	Validateo	_ <i>"LE</i>	TEN	Validated 👻
C02	Validated -	Ve	· <i>- Dill</i> -	Validated 👻
C04	Validated -	Validated		Validated 👻
C06	Validated -	Validated -	Valida, d	Validated 👻
C08	Validated -	Validated -	Validated -	Validated 👻
C10	Validated -	Validated -	Validated -	Validated 👻
C12	Validated -	Validated -	Validated -	Validated -
C14	Validated -	Validated -	Validated -	Validated -
C16	Validated -	Validated -	Validated -	Validated 👻

sMDT "C-side "Storage @Meyrin bldg. 175

Successful and on-time commissioning of the BIS78 A/C-side sMDT detectors have been fully completed @CERN BB5 facility.

7 tested detectors have been safety stored @CERN Meyrin site (bldg. 175)

1 (C06) chamber has been stored at the BB5 facility for the mechanics improvement activity

"C-side" chambers will be re-validated again before the final installation!

Elena Voevodina

BIS78 sMDT and RPC Integration

Elena Voevodina

sMDT + RPC Integration

The integrated mechanical design of the two chambers with low tolerances are required.

8 "A-side" sMDT chambers have been successfully integrated with RPCs!

Elena Voevodina

BIS78 sMDT Interference Test

BIS78 A04 - Interference Study @BB5

 \rightarrow average noise rate for sMDT A04 with RPC system OFF is (0.17 ± 0.03) kHz/tube

 \rightarrow average noise rate for sMDT A04 with RPC system ON is (0.43 ± 0.03) kHz/tube

Detailed study shown that the effect of the RPC detector + its electronics is negligible to sMDT system (chamber + its electronics @ operating THR. = -39 V) in the term of noise!

All 8 "A-side" sMDT chambers have been passed test!

Elena Voevodina

Final Mechanics & Services Installation

Each BIS78 sMDT detector must be equipped 4 B-field, 4 Axial - Praxial and 2 CCC sensors

The B-field sensors and chamber-to-chamber alignment systems of the MDT chamber are re-used for the new sMDT system again

A04 sMDT Final Services Installation @BB5

Cables installation & routing

B-sensor preparation

Elena Voevodina

Installation & commissioning @ATLAS Cavern

Elena Voevodina

Deinstallation of the MDT system

BIS7A /BIS8A MDT chambers decommissioning

- Disconnection:
 - Gas line
- Mezzanine, HV, B-/T-sensors, grounding & alignment cables
- Dismounting

witties in the	e ATLAS Cavern d upon with the
All active been agreed have been agreed Technical coordin	nation

MDT chamber deinstallation

Elena Voevodina

Installation

17th of September 2020 the first BIS78 Detector Module has been successfully installed to the A04 sector of the ATLAS Muon spectrometer.

Installation Sequence:

- Insertion into the installation frame
- Lowering into the ATLAS Cavern, change of cranes
- Docking of the installation frame to the ATLAS Muon Spectrometer rail system
- Installation of the muon station with two winches
- Final positioning and fixation of support frame on rails

Insertion into the frame

Docking

Installation

Elena Voevodina

Installation

Insertion into the installation frame

Docking to the ATLAS Muon System rail system

Lowering into the ATLAS Cavern

Installation of the station with two winches

Elena Voevodina

BIS78 sMDT Detector Commissioning

Alignment connected and checked -> chamber in expected positions;

Gas line connected, flushed and @3 bar;

2 of each CSMs, CSM-motherboards and MDMs installed and checked;

Service cables (mezzanine, HV, B-/T-sensors and grounding) connected;

LV and fibers checked to ensure right mapping;

B-/T-sensor and front-ends V-/T-sensor readout checked;

LV and HV applied and all currents in expected range.

Stable long DAQ without any mezzanine

MPI

Conclusions

BIS78 sMDT production and commissioning:

- Successful and on-time production of both A/C-side BIS78 sMDT detectors (\sim 11 000 drift tubes => 16 detectors) from 2017 to 2019.
- 16/16 chambers have been fully assembled and validated at MPI
- In 2019/2020, the 16 A/C-side BIS78 sMDT chambers have been shipped to CERN BB5 facility.
- Each detectors have been fully validated @CERN BB5 facility.
- 8 "A-side" sMDT detectors have been integrated with two new trigger RPC chambers.

BIS78 Muon module installation and commissioning:

- 8/16 BIS78 Muon station successful installed in ATLAS from Sept. 2020 to Jan. 2021
- 8 sMDT BIS7A have been commissioned!
- 8 sMDT chambers had been integrated into ATLAS DAQ.
- Stable DAQ after long time debug and tests was obtained.
- 1st recorded dataset with all sMDT BIS7A data from ATLAS combined run in M5 has been completed.

We gained valuable experience for the The analysis of data is ongoing!

DPG-Frühjahrstagungen – Dorthofutture BIS 1-6 sMDT upgrade project!

p. 23

Thank you to all who helped building, testing, integrating and installing the BIS78 sMDT detectors!

Elena Voevodina

Backup slides

Elena Voevodina

Current status of the ATLAS Muon Spectrometer

The ATLAS Muon Spectrometer was designed to provide muon identification, excellent triggering, timing and momentum measurements at LHC nominal luminosity of $10 \times 34 \ cm^{-2}s^{-1}$.

Muon acceptance: $|\eta| < 2.7$

Four Technologies used for the Muon System:

- ✓ Precision Tracking Chambers
- MDT (Monitored Drift Tubes), |η| < 2.7:</p>
- <u>CSC (Cathode Strip Chambers), 2.0 < $|\eta|$ < 2.7:</u>

- Primary Trigger Chambers
- **RPC (Resistive Plate Chamber),** $|\eta| < 1.05$
- TGC (Thin Gap Chamber), $1.05 < |\eta| < 2.4$

Elena Voevodina

Current status of the ATLAS Muon Spectrometer

The ATLAS Muon Spectrometer was designed to provide muon identification, excellent triggering, timing and momentum measurements at LHC nominal luminosity of $10 \times 34 \ cm^{-2}s^{-1}$.

Four Technologies used for the Muon System:

- ✓ Precision Tracking Chambers
- <u>MDT (Monitored Drift Tubes), |η| < 2.7:</u>
- CSC (Cathode Strip Chambers), $2.0 < |\eta| < 2.7$:

- Primary Trigger Chambers
- **RPC (Resistive Plate Chamber),** $|\eta| < 1.05$
- TGC (Thin Gap Chamber), $1.05 < |\eta| < 2.4$

Elena Voevodina

ATLAS Muon Spectrometer Phase-I Upgrade

ATLAS Muon Spectrometer upgrade is motivated by the improving of the high p_T muon trigger system

1. Endcap muon tracking and trigger upgrade at 1.3 < $|\eta|$ < 2.7 :

The New Small Wheels project combine the two different gaseous detector technologies:

- high-resolution small-strip Thin Gap Chamber (sTGC) -> 96 detectors for the triggering
- Micro-pattern gaseous detector Micromegas (MM) -> 64 detectors for the tracking

Preparation of the chamber for the functional test with cosmic muons

- 1. Evacuate the chamber to $< 10 \ mbar$ in order to extract the contamination of the chamber gas with ethanol from the leak testing.
- 2. Fill the chamber with $Ar: CO_2$ (93: 7) to 3 bar absolute pressure.
- 3. Wait for 30 minutes to get a temperature equilibrium between the chamber and the gas.
- 4. Measure the chamber temperature and the gas pressure and close all valves on the chamber.
 → Needed for a measurement of the leak rate of a fully equipped chamber.
- 5. Apply the nominal operating voltage of 2730 V and measure the dark current of the chamber. <u>Requirement:</u> Current < 2 nA/tube at < 60% humidity.
- 6. Measurement of the accidental hit rate in each tube with and without high voltage.
- 7. Cosmic-ray run to acquire a dataset corresponding to ~1 million cosmic muons through the chamber (15 h with the set-up at MPI/BB5, can be shortened by increasing the trigger surface).
- 8. Measurement of the maximum drift time of each tube to obtain a measure for the uniformity of the space drift-time relationship across the chamber.
- 9. Measurement of the muon detection efficiency of each tube.
- 10. Measurement of the single tube resolution.
- 11. After >24 h measurement of the chamber temperature and the gas pressure for each multilayer separately to obtain the leak rate of each multilayer.

Gas Leak Rate Test

Identify the Gas Leak Rate of the detector by monitoring the drop of the internal pressure as a function of time and check the gas tightness

- The detector is pressurized at 3 bar in the operating gas mixture Ar: CO₂ (93:7)
- The pressure drop is measured for each individual multi layers (ML 1 and ML 2) after 24 hours During the test, the gas valves remain closed.
- Instrumentations: pre-mixed gas bottle, MKS Baratron and 12 temperatures sensor glued on the surface of the sMDT detector
- MKS Baratron heated reference differential manometer Accuracy: 0.3 mbar at 3000 mbar
- The detector gas leak are estimated by the following equation:

MKS Instruments 390HA-00001SP12

Accuracy of the pressure drop measurement:

$$\delta(\Delta p) \approx \sqrt{2(\delta p)^2 + 2\left(3000 \, mbar \frac{\delta T}{T_{ref}}\right)^2} = 1.6 - 2 \, mbar$$

→ <u>Acceptance criteria</u>

The detector under test is validated if the pressure drop in the detector + gas system does not exceed:

 $\Delta p \leq 2n_{tubes} \times 10^{-8} bar \times Liters \times s^{-1}$

Gas Leak Rate Measurement

Determination of Gas Leak for each Multilayer (ML)

- Detector is pressurized at 3 bar in the operating gas mixture Ar: CO₂ (93:7)
- Pressure measurement *p*(*t*)
- Temperature measurement *T*(*t*) (12 on-chamber sensors)
- Duration: > 24 hours
- Gas Leak estimation: Leak Rate

Leak Rate = $[p_f \cdot \frac{T_{ref}}{T_f} - p_i \cdot \frac{T_{ref}}{T_i}] \cdot \frac{V}{(t_f - t_i) \cdot N_{plugs}}$ $T_{ref} = 293.15 \text{ K} - reference temperature}$ $p_i, p_t; T_i, T_t - initial, final pressures and temperatures$ $V, N_{plugs} - volume under test and number of the tube end plugs$

→ ATLAS acceptance criteria

Detector under test is validated if the pressure drop in the detector + gas system doesn't exceed:

 $\Delta p \leq 2 n_{tubes} \times 10^{-8} \ bar \times Liters \times s^{-1}$

All data and results obtained at BB5 facility are verified against measurements in MPI. Elena Voevodina DPG-Frühjahrstagungen – Dortmund 2021

EXPERIMENT

Connectivity & Electronics Noise Test

Determination of Noise Rate for each Chamber Service Module (CSM)

- Detector is pressurized at 3 bar in the operating gas mixture Ar: CO₂ (93:7)
- Random Trigger
- Measurement Hits/Tube
- Convert to noise rate using active time window of read-out electronics
- Nominal *THR* = 108 ASD (-39 mV)
- Detector configurations: HV turned OFF and ON

operating $HV_{WP} = 2730 V$

 $\rightarrow \underline{\textit{Criteria for excluding noisy tube:}} \\ Noise_i^{ON} > 5 \, kHz \, and \, Noise_i^{ON} > 2 \times Noise_i^{OFF}$

The potential high noise rate sources in the sMDT detectors:

Discharge of the electr. components

Elena Voevodina

Noise Rate Test Summary:

\rightarrow <u>"A-side" sMDT chamber</u>

Noise Rate (HV OFF) = (61.3 ± 8.3) Hz/tube Noise Rate (HV ON) = (90.6 ± 9.3) Hz/tube Rejected tube = 0.1 %

→ <u>"C-side" sMDT chamber</u>

Noise Rate (HV OFF) = (65.7 ± 6.0) Hz/tube Noise Rate (HV ON) = (114.9 ± 10.1) Hz/tube Rejected tube = 0.7 %

Cosmic Ray Test

sMDT setup @CERN BB5: WP = 2730V, P = 3 bar in Ar: CO₂ (93:7)

<u>Maximum drift-time</u>

the efficiency drop close to the tube wall

which is in agreement with the expectation from the test beam measurement with high energy muons.

ATLAS EXPERIMENT

Cosmic Ray Test (I)

The last commissioning test is the Spatial Resolution & Muon Efficiency Measurements which allows to check that the drift tube is recorded hit, if a reconstructed track is passing through the tube

- The detector is operated at the WP = 2730 V and the 3 bar in gas mixture Ar: CO₂ (93:7)
- The duration of the data taking is *15 hrs* per CSM.
- The cosmic trigger active area is 114 *cm* x 9 *cm*.
- Expected trigger rate is 17.1 *Hz*.

Spatial Resolution

■ Select nearly *vertical muon tracks* → For perfectly vertical tracks:

 $\sigma(r_1) = 2^{-0.5} \cdot \sigma(r_2 - r_1)$

■ For tracks with inclination |*m*| < 0.01:

$$\sigma(r_{1/2}) = \sigma(\frac{r_2 - r_1}{\sqrt{2}} + \frac{m \cdot (z_2 - z_1)}{\sqrt{2} \cdot (1 + m^2)}$$

sMDT setup @CERN BB5 facility

Cosmic Ray Test (II)

The last commissioning test is the Spatial Resolution & Muon Efficiency Measurements which allows to check that the drift tube is recorded hit, if a reconstructed track is passing through the tube

Muon Detection Efficiency

- Measurement reproduces know dependence of the efficiency on the distance of the muon track from anode wire
- \rightarrow Average Efficiency of BIS78 sMDT detector $(97.4\pm0.2)~\%$ within the ATLAS requirements
- \rightarrow The muon efficiency is < 100% because of the efficiency drop close to the tube walls

- Muon track is reconstructed by excluding one layer of tubes
- Muon detection efficiency of a tube is determined as to how often does an excluded tube have a hit when its gas volume is traversed by a reconstructed muon track

from Production to Installation ...

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

sMDT "C-side" module status @ BB5

Summary of BIS78 C-side sMDT status and progress @ BB5 facility

C-side sMDT Storage @Meyrin bldg. 175

	Visual Inspection	Gas Leak Rate Test	Connectivity & Electronic Noise Test	Cosmic Ray Test	Storage Location	
C02	Validated -	Validated 🗸	Validated 🗸	Validated	Meyrin bldg. 175 👻	
C04	Validated -	Validated 👻	Validated	Validated -	Meyrin bldg. 175 👻	
C06	Validated -	Validated	Vargateby	Validated -	BB5 facility 👻	
C08	Validated -	Validated	Validated -	Validated -	Meyrin bldg. 175 👻	
C10	Validated	- herisated	Validated 🗸	Validated 🗸	Meyrin bldg. 175 👻	
C12	Validated hol	Validated 🔹	Validated 👻	Validated 🚽	Meyrin bldg. 175 👻	
C14	Validated	Validated -	Validated 👻	Validated -	Meyrin bldg. 175 👻	
C16	Validated -	Validated 👻	Validated 🔹	Validated 👻	Meyrin bldg. 175 👻	

- ✓ 8 "C-side" sMDT BIS78 modules have been delivered from the MPI-Munich at the beginning of June 2020 when the storage and test spaces at CERN were available
- ✓ 8 C-side sMDT chambers have been fully validated @CERN BB5 facility
- ✓ 7 tested detectors have been safety stored @CERN Meyrin site (bldg. 175)
- ✓ 1 (C06) chamber has been stored at the BB5 facility for the mechanics improvement activity
- ✓ All chambers will be re-validated again before the final installation

BIS78 sMDT Interference Test

Sequence:

- Check connectivity of the electr. components
- Monitor the communication stability
- Noise level measurement
- Identification the noisy/dead channels

BIS78 A04 - Noise Study @BB5

Detailed study shown that the effect of the RPC detector + its electronics is negligible to sMDT system (chamber + its electronics @ operating THR. = -39 V) in the term of noise!

DPG-Frühjahrstagungen – Dortmund 2021