Event shape measurement in deep-inelastic $e^{\pm}p$ scattering

Johannes Hessler jhessler@mpp.mpg.de

Technische Universität München, Max-Planck-Institut für Physik

March 2021

- Measure the 1-jettiness event shape observable τ_1^b in deep-inelastic $e^{\pm}p$ scattering
- Accurate theoretical calculations available (analytical $O(\alpha_s)$ cross sections in combination with N³LL resummation) [1, 2]
- Small theoretical uncertainties for τ^b_1
- Observable is sensitive to α_s and parton distribution functions
- HERA has high centre of mass energy \sqrt{s} and luminosity L

Theory prediction for the 1-jettiness [3].

H1 detector

MAX-PLANCK-INSTITUT FÜR PHYSIP

- H1 is a multipurpose collider experiment at DESY (Hamburg)
- Deep-inelastic $e^{\pm}p$ scattering at $E_e = 27.5$ GeV and $E_p = 920$ GeV $\rightarrow \sqrt{s} \approx 320$ GeV
- Data taken from 2003 to 2007 \Rightarrow Integrated luminosity 351.6pb⁻¹
- Two run periods e^+p , two run periods e^-p
- Obtain tracks for the analysis from the Central Tracking Detector (3) and the Forward Tracking Detector (4)
- Cluster information from the Liquid Argon Calorimeter (6)

(13) Muon toroid magnet

Schematic drawing of the H1 detector with its main components [4].

Liquid Argon calorimeter (em and had)

Liquid Argon cryostat

H1 detector

MAX-PLANCK-INSTITUT FÜR PHYSIK

Neutral current DIS diagram.

- Use I Σ method [5] used for reconstruction of Bjorken *x*, inelasticity *y* and momentum transfer Q^2
- Measure the observable in the phase space 0.2 < y < 0.7 150 ${\rm GeV}^2 < Q^2 <$ 20000 ${\rm GeV}^2$
- Low background in selected region
- Two different MC generators Django and Rapgap are available
- Excellent agreement between data and MC

 Q^2 distribution and ratio to data. Selected phase space confined by dashed lines.

MAX-PLANCK-INSTITUT FÜR PHYSI

• Define 1-jettiness as [2]

$$\tau_1^b = \frac{2}{Q^2} \cdot \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

- with $q_B^b = x \cdot P$ ($x \cdot P$: momentum of incoming parton) and $q_I^b = q + x \cdot P$ ($q^2 = -Q^2$: momentum transfer)
- Derive an expression for τ_{zQ} by boosting to the Breit frame (virtual photon completely space-like, collides with proton along z-axis) [3, 6]

$$\tau_{zQ} = 1 - \frac{2}{Q} \cdot \sum_{i \in H_c} p_{i,z}$$

 \Rightarrow Only particles in the current hemisphere contribute

 \Rightarrow Both definitions are equivalent on hadron level $\tau_{zQ}=\tau_1^b$

Feynman diagram for DIS in the Breit frame.

Single particle reconstruction

MAX-PLANCK-INSTITUT FÜR PHYSIK

- au_1^b is a full phase space observable
- τ_{zQ} is experimentally preferred, since only particle with $\eta^{breit} < 0$ contribute
- H1 uses particle-flow algorithm to reconstruct particle candidates
- Tracks are reconstructed by combining details from different sub-detectors (FTD, CTD)
- A single-particle study is performed: Study *p_Z*-measurment of contributing particles
- \Rightarrow Very good agreement for all detector components over the entire p_Z -range

1-jettiness distribution

MAX-PLANCK-INSTITUT FÜR PHYSIK

- Reasonable agreement between data and MCs
- Both MCs underestimate the resummation region $\tau_{zQ} \approx 0.2$
- Django has harder spectrum than Rapgap
- Few events with $\tau_{zQ} < 0$ beacause of QED radiation \Rightarrow Needs to be corrected for

7

 τ_{zO}

Acceptance and purity for binned distribution

• Study acceptance and purity distribution to find suitable binning

$$Acceptance = \frac{N_{\rm rec}}{N_{\rm gen}} \qquad \qquad Purity = \frac{N_{\rm stay}}{N_{\rm rec}}$$

• Defined 13 bins in τ_{zQ} : [0.0, 0.05, 0.10, 0.15, 0.22, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98, 1.0]

 \Rightarrow Acceptance around 60% for each bin, purity around 40%

Migration matrix for reduced Rapgap data sample.

MAX-PLANCK-INSTITUT FÜR PHYSIK

Ratio τ_1^b/τ_{zQ} on particle level

MAX-PLANCK-INSTITUT FÜR PHYSIP

Validate the equality of τ_1^b and τ_{zQ}

- Compare τ_1^b and τ_{zQ} on hadron level
- Exclude all events with electron initial or final state radiation (e → γe)

 \Rightarrow Distribution of τ^b_1 matches distribution of τ_{zQ} on non-radiative hadron level

 \Rightarrow QED radiation is well understood, can be corrected

 \Rightarrow Measure τ_{zQ} and compare it to calculations for τ^b_1

$\tau^b_1 \ {\rm cross} \ {\rm section}$

- First results for differential cross section $d\sigma/d\tau_1^b$
- Integrated Luminosity $L = 351.6 \text{ pb}^{-1}$
- Using bin-by-bin detector corrections c_i
- Differential cross section in bin i with width Δ_i defined as:

$$\left(rac{d\sigma}{d au_1^b}
ight)_i = rac{N_i^{data} - N_i^{bkgd}}{L\cdot\Delta_i}\cdot c_i$$

 \Rightarrow Data compared to recent Pythia 8.3 + Vincia prediction

 \Rightarrow Good agreement for lower τ_1^b values, but underestimates high- τ_1^b region

H1 data H1 private work Django Rapgap Pythia 8.3s = 320 GeV $L = 351.6 \text{ pb}^{-1}$ 2 0.2 0.4 0.6 0.8 'n τ_1^0

Differential cross section $\frac{d\sigma}{d\tau^b}$.

dσ/dτ₁ [nb]

Conclusion

MAX-PLANCK-INSTITUT FÜR PHYSIF

Summary

- Measure 1-jettiness τ_1^b in neutral current DIS at H1
- Measured the detector level τ_{zQ} distribution
- Defined binning in τ_{zQ}
- Validated the equality of τ_{zQ} and τ_1^b on hadron level
- Presented first results for single-differential cross section $\frac{d\sigma}{d\tau^b}$

Outlook

- Measure triple-differential cross section $\frac{d^3\sigma}{d\tau_1^b dx dQ^2}$
- Study systematic uncertainties
- Apply advanced unfolding methods
- Expand analysis to larger phase space
- Probe sensitivity of τ_1^b to α_s and PDFs

- Z. Kang, X.Liu, S. Mantry, The 1-Jettiness DIS event shape: NNLL + NLO results, arXiv:1312.0301v2, 2014
- [2] D. Kang, C. Lee, I. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, arXiv:1303.6952v2, 2013.
- [3] D. Kang, DIS Event Shape at N³LL, https://indico.cern.ch/event/341292/contributions/1739091/attachments/670208/ 921244/DIS2015-kang.pdf, 2015
- [4] R. Kogler, Measurement of Jet Production in Deep-Inelastic *ep* Scattering at HERA, DESY-THESIS-2011-003, 2010
- [5] U. Bassler, G. Bernardi, On the Kinematic Reconstruction of Deep Inelastic Scattering at HERA: the Σ Method, arXiv:hep-ex/9412004v1, 1994
- [6] D. Kang, C. Lee, I. Stewart, Analytic Calculation of 1-Jettiness in DIS at $O(\alpha_s)$, arXiv:1407.6706v1, 2014.