

MAX-PLANCK-INSTITUT FÜR PHYSII

on behalf of the **PEN consortium**

Production of low-background poly(ethylene naphthalate) as a self-vetoing structural material for LEGEND -200

> DPG Frühjahrestagung 17th March 2021 Felix Fischer

Neutrinoless double beta decay

 $0\nu\beta\beta$ -decay

Double beta decay

Normal beta decay is strongly suppressed for some isotopes \rightarrow Double beta decay, $2\nu\beta\beta$ -decay

 $0\nu\beta\beta$ -decay

Double beta decay

Normal beta decay is strongly suppressed for some isotopes \rightarrow Double beta decay, $2\nu\beta\beta$ -decay

Neutrino as majorana particle

Neutrinoless double beta decay

If neutrinos are their own anti-particles \rightarrow Neutrinoless double beta decay, $0\nu\beta\beta$ -decay

What do we know about neutrinos?

- 2nd most abundant known particles in the observable universe
- They love to oscillate
- At least 2 neutrino species must have mass
- They are generators for Nobel prizes

What we **don't know** about neutrinos:

- Does the neutrino relate to matter-antimatter asymmetry?
 - Leptogenesis
- Absolute neutrino mass scale?
- Neutrino mass hierarchy?
- Why is their mass tiny?
- ...

What we **don't know** about neutrinos:

- Does the neutrino relate to matter-antimatter asymmetry?
 - Leptogenesis
- Absolute neutrino mass scale?
- Neutrino mass hierarchy?
- Why is their mass tiny?
- ...

Detecting the $0\nu\beta\beta$ -decay would imply:

- Lepton number violation
- Information about the nature of neutrinos

 Majorana or Dirac?
- Information about absolute neutrino mass

What we **don't know** about neutrinos:

- Does the neutrino relate to matter-antimatter asymmetry?
 - Leptogenesis
- Absolute neutrino mass scale?
- Neutrino mass hierarchy?
- Why is their mass tiny?
- ...

Detecting the $0\nu\beta\beta$ -decay would imply:

- Lepton number violation
- Information about the nature of neutrinos

 Majorana or Dirac?
- Information about absolute neutrino mass

So... let's get some isotope and start? Felix Fischer DPG Frühjahrestagung 2021

Neutrinoless double beta decay

 $0\nu\beta\beta$ -decay

 $\beta\beta$ -decay spectrum

Isotope ⁴⁸Ca, **⁷⁶Ge**, ⁷⁸Kr, ⁸²Se, ⁸⁶Kr, ⁹⁶Zr, ¹⁰⁰Mo, ¹³⁶Xe, ¹³⁰Te, ... Detector Germanium crystals make great detectors with high energy resolution **Decay channel** Can we detect the decay? $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^{-}$ $Q_{\beta\beta} = 2039 \text{ keV}$

Felix FischerDPG Frühjahrestagung 20214/10

FÜR PHYSIK

Low-background challenge

T 68.1: **LEGEND Group Report** Wednesday, March 17, 2021, 16:00–16:20

PEN Poly(ethylene 2,6-naphthalate)

Scintillator

Potential to veto background events

Wavelength shifter

Shifts 128 nm scintillation light from LAr to visible blue light

0

6 0

0

0

of background events close to the detector $_{e.g.^{42}K}$

Felix FischerDPG Frühjahrestagung 20216/10

PEN Poly(ethylene 2,6-naphthalate)

Scintillator

Potential to veto background events

Wavelength shifter

Shifts 128 nm scintillation light from LAr to visible blue light

Particle identification

Differentiation of particles by PSD

High purity

< 1µBq per holding plate

PEN Poly(ethylene 2,6-naphthalate)

Scintillator

Potential to veto background events

Wavelength shifter

Shifts 128 nm scintillation light from LAr to visible blue light

Particle identification

Differentiation of particles by PSD

High purity

< 1µBq per holding plate

Mechanical properties

Stronger than Si plates Mechanically better in cryogenic liquids than Cu R&D on encapsulation for L1000

(T 68.2: Wednesday, March 17, 2021, 16:20–16:35, L. Manzanillas)

Our goal is clear, but how do we get there in a **radio-pure way**?

Our goal is clear, but how do we get there in a **radio-pure way**?

Let's start with the raw material:

- All parts have been **acid-etched** using high purity nitric acid
- Only **18 MOhm water** was used
- Drying was done in a **heated vacuum tank**

MAX-PLANCK-INSTITUT

Our goal is clear, but how do we get there in a **radio-pure way**?

Producing PEN plates:

- Method: Injection compression molding
- All parts in contact with PEN have been acid-etched
- Complete production in class 100 clean room

Our goal is clear, but how do we get there in a **radio-pure way**?

Producing PEN plates:

- Method: Injection compression molding
- All parts in contact with PEN have been acid-etched
- Complete production in class 100 clean room
- Plates have been scanned for radio-impurities for ~60 days

Our goal is clear, but how do we get there in a **radio-pure way**?

LEGEND-200 holder production:

- Screening of plates for ~60 days
 - <1 µBq per holder mass
- All holders needed for L200 have been produced
 - Screening ongoing

Qualification Measurements

Processed Holders:

- Measurements ongoing
 - Attenuation length, veto efficiency, radio-purity, light yield
- First real-life tests have been performed in 2020
 - SCARF setup at TU Munich
 - Post GERDA tests (PGT)
 - Detectors were not affected by leakage current

Qualification Measurements

Outlook

Processed Holders:

- Measurements ongoing
 - Attenuation length, veto efficiency, radio-purity, light yield
- First real-life tests have been performed in 2020
 - SCARF setup at TU Munich
 - Post GERDA tests (PGT)
 - Detectors were not affected by leakage current

LEGEND-200

- Start is expected this year
- Delayed due to the pandemic
- All PEN structures are at LNGS and will be screened until they will be integrated into the experiment

Felix Fischer DPG Frühjahrestagung 2021 10/10

Exposure

LEGEND-200 = 200 kg LEGEND-1000 = 1 ton of enriched material 88% ⁷⁶Ge

Sensitivity:

Identification & Rejection

LAr veto, Muon veto, detector anti-coincidence, PSD, active materials,...

Background Index

Go underground
 Radioclean materials
 Shielding

Good enough?

T 68.1: **LEGEND Group Report** Wednesday, March 17, 2021, 16:00–16:20

Can we detect such decay?

Sensitivity on half-life: $T_{1/2}^{0
u} \propto \sqrt{rac{m\cdot t}{BI\cdot\Delta E}}$

Resolution: ΔE

Germanium detectors have a great energy resolution < 0.1% at $Q_{\beta\beta}$ \rightarrow Limited by the detectors

Felix Fischer DPG Frühjahrestagung 2021

Exposure: m · t

More mass and longer measurement → Limited by funding

Background index: BI

 \rightarrow Can be improved!

LEGEND

LEGEND-200

Upgrade to 200 kg of germanium Existing infrastructure at LNGS Funding: granted in 2018 Data taking: 2021 Sensitivity goal: $T_{1/2} > 10^{27}$ yr Background goal: $2 \cdot 10^{-4}$ c/(keV·kg·yr) GERDA: $5 \cdot 10^{-4}$ c/(keV·kg·yr)

LEGEND-1000

Upgrade to 1000 kg of germanium New lab is being discussed Funding: in progress Sensitivity goal: $T_{1/2} > 10^{28}$ yr Background goal: $6 \cdot 10^{-5}$ c/(keV·kg·yr)

MAX-PLANCK-INSTITUT

Implication for neutrino physics

Target: Inverted ordering band

⁷⁶Ge (88% enr.)