online version

Einfluss von grossen passivierten Oberflächen auf BEGe Detektoren

Influence of Big Passivated Surfaces on BEGe Detectors

DPG - Frühjahrstagung Dortmund Dienstag, 16.03.21 Martin Schuster

Outline

- Physics Motivation
- Detector design
- Experimental Setup and Data
- Effects of the passivated area on the energy spectra for different temperatures
- Pulses and Simulation
- Summary and outlook

Germanium Detectors - Physics Motivation

Search for **Neutrinoless double beta decay**

Germanium Detectors - Physics Motivation

Search for **Neutrinoless double beta decay**

Germanium Detectors - Physics Motivation

Search for **Neutrinoless double beta decay**

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

(enriched) Germanium Semiconductor Detectors

Source == Detector -> High Detection efficiency

Excellent Energy Resolution -> good sensitivity and background discrimination

BEGe – Design

200

Point Contact, here +4500V

MAX-PLANCK-INSTITUT FÜR PHYSIK

7Ap. Dg > 11

Solid

etectors

State

Segmented BEGe – Detector Design

Experimental Setup and Acquired Data

Energy Spectrum

Energy Spectrum

T-dependence

T-dependence

MAX-PLANCK-INSTITUT FÜR PHYSIK

x in mm

11

MAX-PLANCK-INSTITUT

MAX-PLANCK-INSTITUT

13

Averaging selected pulses to form "Superpulses"

Summary and Outlook

Behaviour right beneath the passivation layer:

- Low-energy peaks shift towards lower energy
 - r- dependence seems to increase for higher temperatures
 - affected zone grows with temperature
- Energy is shared between neighboring segments
 - charge (hole) trapping / charge diffusion

Next Steps:

- Explore surface charge up scenarios with simulations
- Study the effects with a geometrically identical p-type detector

BACKUP

Signal Formation

Signal Formation

