

First Belle II results on charmless B-decays and prospects

DPG Frühjahrstagung

Oskar Tittel, Markus Reif, Benedikt Wach, Hans-Günther Moser

The Belle II experiment

Upgrade of the Belle experiment, located in Tsukuba, Japan

Experiment on the intensity frontier of the search for new physics (NP)

Goal:

Perform most precise measurements of Standard Model (SM) parameters → Focus on CPV and extraction of CKM angles

$$e^+ - e^-$$
 collisions at $\sqrt{s} = m(\Upsilon(4S)) = 10.58$
GeV

 $\Upsilon(4S)$ decays into B-meson pair \rightarrow B factory Beam energies are asymmetric: 4 & 7 GeV \rightarrow boost

Luminosity goals: 30 x Belle peak luminosity ($\mathcal{L} = 6 \times 10^{35} cm^{-2} s^{-1}$) 50 x Belle integrated luminosity ($\mathcal{L}_{int} = 50 ab^{-1}$)

The Belle II Detector

Hadronic Charmless B-Decays

Mediated by Cabibbo-suppressed $b \rightarrow u$ trees and $b \rightarrow d, s$ penguins

Belle II goals: Potentially find NP in loop contributions Extraction of α/φ_2 from $B \to \pi\pi$ system Test SM using isospin sum rules Investigate puzzling A_{CP} measurements in $B \to K\pi$ system

Short term:

Achieve first BR and direct CPV measurements using $34.6 fb^{-1}$

 \rightarrow validate detector and analysis tools

Analysis Strategy

1. Reconstruction

combine candidates in kinematic fits to fill list of B-meson candidates

2. Selection

loose baseline selection followed by optimized continuum suppression and particle identification cuts

3. Modelling

use simulated data (MC) to model relevant features in determine selection efficiencies for BR calculations

- 4. Fit to data & calculate physics quantities
- 5. Assess systematic uncertainties

Continuum Suppression

$$\Gamma(q\bar{q})$$
: $\Gamma(\Upsilon(4S)) = 3$: 1 at $\sqrt{s} = 10.58$ GeV

Exploit differences in the decay shapes of continuum $(q\bar{q})$ and $B\bar{B}$ events

Train boosted decision tree with 39 event variables to create combined continuum suppression variable (CSV)

Simultaneously optimize CSV and PID using $FOM = \frac{S}{\sqrt{S+B}}$

	BR [10 ⁻⁶]	A _{CP}
$B^0 \to K^+ \pi^-$	$18.9 \pm 1.4(stat.) \pm 1(syst.)$	$0.030 \pm 0.064(stat.) \pm 0.008(syst.)$
$B^+ \to K^+ \pi^0$	$12.7^{+2.2}_{-2.1}(stat.) \pm 1.1(syst.)$	$0.052^{+0.121}_{-0.119}(stat.) \pm 0.022(syst.)$
$B^+ \to K^0 \pi^+$	$21.8^{+3.3}_{-3.0}(stat.) \pm 2.9(syst.)$	$-0.072^{+0.109}_{-0.114}(stat.) \pm 0.024(syst.)$
$B^0 \to K^0 \pi^0$	$10.9^{+2.9}_{-2.6}(stat.) \pm 1.6(syst.)$	
$B^0 \to \pi^+\pi^-$	$5.6^{+1.0}_{-0.9}(stat.) \pm 0.3(syst.)$	
$B^+ \to \pi^+ \pi^0$	$5.7 \pm 2.3(stat.) \pm 0.5(syst.)$	$-0.268^{+0.249}_{-0.322}(stat.) \pm 0.123(syst.)$
$B^+ \to K^+ K^- K^+$	$32.0 \pm 2.2(stat.) \pm 1.4(syst.)$	$-0.049 \pm 0.063(stat.) \pm 0.022(syst.)$
$B^+ \to K^+ \pi^- \pi^+$	$48.0 \pm 3.8(stat.) \pm 3.3(syst.)$	$-0.063 \pm 0.081(stat.) \pm 0.023(syst.)$

Charmless Note: https://docs.belle2.org/record/2117/files/BELLE2-CONF-PH-2020-012.pdf

Conclusion and Outlook

First measurement of BRs and direct CPVs of charmless B-decays at Belle II Results are in agreement with current world averages, but errors are still large

Results with more sophisticated analysis and a data set of 62.8 fb^{-1} presented at Moriond and more to come!

