Single-chip Cloud Computer for Belle II DAQ

Kolja Prothmann

- Motivation and Requirements
- •The SCC
 - Technical details
 - Programming example
- Application in the DAQ
- Conclusion

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Data from PXD is 10 times the data from rest of the detector
- Bandwidth 20 x 5Gb
- Data reduction is needed!
 - Bandwidth
 - Calculation time

Single-Chip Cloud Computer (SCC) solves 'calculation time' issue!

 \rightarrow Research proposal on the SCC handed in to INTEL

- INTEL terascale group
 - Aim is to provide scalable solutions for >100 cores
- Single-chip Cloud Computer
 - 48 cores
 - Advanced message passing (256 Gb)
- Modes of Operation
 - SMP (Symmetric MultiProcessing) with OS (e.g. Linux)
 - Message passing (library RCCE)
 - Baremetal (no OS)
 - Emulation on PC multicore CPUs (library RCCE)

Top Level Hardware Architecture

•6x4 mesh 2 Pentium[™] P54c cores per tile
•256KB L2 Cache, 16KB shared MPB per tile
•4 iMCs, 16-64 GB total memory

'22

SCC - logical architecture

Programmer's view of SCC

- 48 x86 cores with the familiar x86 memory model for Private DRAM
- 3 memory spaces, with fast message passing between cores (means on/off-chip)

t&s Shared test and set register

How does RCCE work? Part 2

- Treat Msg Pass Buf (MPB) as 48 smaller buffers ... one per core.
- Symmetric name space ... Allocate memory as a collective op. Each core gets a variable with the given name at a fixed offset from the beginning of a core's MPB.

SCC Platforms

- Three platforms for SCC and RCCE
 - Functional emulator (on top of OpenMP)
 - SCC board with two "OS Flavors" ... Linux or Baremetal (i.e. no OS)

RCCE (speak: 'rocky') library

- Emulation (using OpenMP)
- SCC test board

```
#include "RCCE.h"
...
RCCE_init(&argc, &argv);
buffer = (double *)malloc();
...
cbuffer = (double *)RCCE_malloc()
```

RCCE_send(buffer, size, ID);

Send private memory (buffer) to core ID

RCCE_recv(buffer, size, ID));

Receive into private memory (buffer) from core ID

2010/04/22

- Simulation
 - basf2
- Parallel fitting in analysis
 - Minuit2
- HLT without data reduction algorithm
 - 40 times more data means 40 times more computers

- Summary
 - SCC: 48 cores & advanced messaging hardware
 - SMP (symmetric multi processing)
 - RCCE
 - Looking forward to the outcome of the proposal!
 - Wide range of applications
- Conclusion
 - Alternative approach to a full FPGA implementation
 - Only small changes needed to the C++ code (if any)
 - No custom hardware needed

- InfiniBand
 - 2.5 Gb / 5 Gb
 - very low latency connection
 - Memory access without CPU usage (DMA)
 - linux drivers available
 - (copper cable)
- FiberChannel HBA (Host bus adapter)
 - 2 Gb / 4 Gb
 - Payload: 2112 Bytes
 - Header: 36 Bytes
 - Start of frame, 4Byte
 - FC frame header, 24Byte
 - CRC, 4Byte
 - End of frame, 4Byte

DAQ meeting