Status of module glueing and mechanical design

Karl-Heinz Ackermann, Christian Kiesling, Martin Ritter

4th International Workshop on DEPFET Detectors and Applications 2010-05-04

Module Glueing Mechanical Tests Mechanical Design

Glueing Scheme

Scheme from Laci:

- front face glueing with minimal additional material
- ightharpoonup dead area: 500 μ m + glue
- reinforce glueing with ceramic reinforcement

Ceramic Reinforcements

Initial batch of ceramic reinforcements received

► fitting very well into grooves

First Glueing

 first glueing of thinned down dummies (50 μm) done

Tensile Strength Test

First tensile strength test carried out:

- ▶ ends of the module fixated
- ▶ increasing force applied to pull the pieces apart
- ▶ solid 450 μ m silicon tested to 7 kg
- ightharpoonup unthinned front face glueing achieved $\sim 6\,\mathrm{kg}$

Long time test (unthinned, 3 kg) still ongoing: 2 weeks already achieved

Strengh Test Results

Module Glueing

- module broke just above 5 kg
- glue more or less still intact
- silicon seems to be weaker then glue (for 50 μm)
 - additional tests scheduled

Mechanical Module Tests

Goal: Verify Mechanical Design

Baseline: Screwing of Modules

 \rightarrow Difference between expansion of inner and outer layer \sim 20 μ m for

 $\Delta T = 40$ °C

we need to make sure that modules and glue remain stable over the whole temperature range

Precise position/distance measurement over "large" temperature range needed.

Confocal Chromatic Distance Sensor

- high resolution ($\sim 1\,\mu$ m axial, $\sim 10\,\mu$ m lateral)
- contact free measurement
- almost independent of material (max. slope depends on reflectivity)
- passive sensor: large temperature range possible
- ▶ high measurement rate up to 2 kHz

First tests

Obtained test system to check performance.

But: only measurement in one direction

- measured height of module surface
- ightharpoonup covered $\Delta T = 45 \,^{\circ}\text{C}$
- first results: most changes are from movement of the stage
- no significant movement after preliminary calibration
- additional run with tightened screws
 - movement visible, but not yet understood
 - ▶ silicon damaged due to high torque

Mechanical Design

Definition of length changed

We assumed the straight part to be 200 mm **excluding** cooling manifold now including cooling

- ▶ "old" design not feasible
- currently estimating how to adapt existing design
- precise beam pipe layout needed

Conclusions

first glueing of thinned modules successful

- ightharpoonup silicon showed tensile strength of $\sim 5\,\mathrm{kg}$
- additional tests scheduled to verify
- bowing test scheduled

first temperature tests started

- confocal measuring very promising
- complete calibration of setup required
- preliminary results show screwing to be feasible

Mechanical design currently under redesign to adapt to new beampipe

Spectrogram of climate chamber

Movement of stage

