

Plans for Investigation on Electron-Induced Radiation Damage

Peter Müller, Andreas Ritter Max-Planck-Institute of Physics Munich Semiconductor Laboratory

Outline of this Talk

1) Radiation induced Damage in DEPFET's

1.1 Types of Damage1.2 Oxide and Interface Damage1.3 Origin of Bulk Damage1.4 Consequences of Bulk Damage

2) Irradiation Setup

2.1 ELSA Electron Accelerator2.2 DUT's to be Irradiated2.3 ESD Problems2.4 Hard- and Software

Oxide Charges & Interface Traps

Already investigated with X-Rays at KIT - Threshold Voltage Shift Threshold Voltage Shift [V] Thick Oxide - Reduced gm => gq- Increased Sub Threshold Swing Thin Oxide 0<mark>0</mark> Dose [MRad] Sub Threshold Swing External Amplification [∧ 300 buiws 200 S 200 g_m at 25µA [µA/V] °0[□] 0^L

4th International Workshop on DEPFET Detectors and Applications : 2-5 May 2010

Dose [krad]

Dose [MRad]

$$E_{max} (centralimpact) = 2 E_e \frac{(E_e + 2 m_e c^2)}{(m_{Si} c^2)}$$

Electron Energy creating a Frenkel Pair E > 255 KeV Electron Energy creating a Cluster E > 8 MeV

NIEL Hypothesis

$$\phi_{eq} = \kappa \cdot \phi_{e^{\pm}}$$
(*neutron equivalent*)

halbleiterlabor

Hardness Factor $\kappa = 0.0425$ for 6 MeV e (BelleII)

Estimated electron flux at BelleII $\phi_{e^{\pm}} \approx 10^7 \, s^{-1} cm^{-2}$ $\Rightarrow \phi_{eq} \approx 4 \cdot 10^5 \, s^{-1} cm^{-2}$

For 5 years $\phi_{e^{\pm}} \approx 5 \cdot 10^{14} cm^{-2}$ $\Rightarrow \phi_{eq} \approx 2 \cdot 10^{13} cm^{-2}$

New States in the Band Gap

Additional energy states in the bandgap increase the

number of thermally generated electron-hole-pairs and thereby the leakage current.

1 Ap. Ag > tt

mpi

halbleiterlabor

Increased Leakage Current

$$\Delta \boldsymbol{I}_{leak} = \alpha \phi_{eq} \boldsymbol{V}$$

 α = current related damage constant ϕ = radiation flux V = Volume halbleiterlabo

Increased Noise

More thermally generated charge carriers.

Most of them drift into the Internal Gate.

Estimation:

 $\phi_{eq} \approx 2 \cdot 10^{13} cm^{-2}$ $\Delta I_{leak} \approx 1 \cdot 10^{-3} A / cm^{3}$

 $\Rightarrow \Delta C \approx 23000e$ (assuming 20 μ s time and 50x50x75 μ m size)

 \Rightarrow IncreasedNoise Δ Noise_{leak} $\approx 150e$

Devices Under Test

- DEPFET Minimatrix PXD5 (All effects)

- Diodes (Bulk Damage)

- Gate Controlled Diodes (Surface generated Leakage Current)

- Capacitors w. thin oxide (Interface Trap Density & Thr. Volt Shift)

ESD Problems

Electro Static Discharge

- Friction can charge your hand up to 30 kV
- Potentially damage of insulator between Poly1 and Poly2 at 20 V+
- Problems might occur not instantly but even weeks later

40 pin carrier for minimatrix

Example of ESD caused damage

Improved PXD5 Minimatrix Setup

New Bond-Scheme : All 16 Drains and 6 Gates are bonded.

> Compatible with old and new Irradiation Board and Prague-Noise-Setup

New Irradiation Readout Board: Access to <u>all</u> pixels (before access to only 8 of 96)

Including safety resistors

New LabView measurement software.

Measuring any number of pixels without switching cables or changing parameters.

Required time for measuring greater numbers of pixels is reduced significantly.

Summary

- New improved Irradiation Setup is ready

- ESD danger reduced significantly
- Electron Irradiation @ ELSA in June 2010
- Measuring Bulk Damage cause by Lattice Displacement
 - Haeting won't be a problem
 - Noise will increase a bit
 - Annealing measurements are planned

Thank you for your attention

Backup Claculation

MonteCarloSimulation HitRate: $10MHz / cm^2$ $\phi_{e^{\pm}} = 10^7 cm^{-2} s^{-1}$ $\kappa = 0.0425$ $\phi_{eq} = \kappa \cdot \phi_{e^{\pm}} = 4.25 \cdot 10^5 cm^{-2} s^{-1}$ $1a \approx 10^7 s$ Assuming 5 years $\phi_{eq} = 2.1 \cdot 10^{13} cm^{-2}$

 $\Delta I_{leak} = 10^{-3} A / cm^{3}$ Depletion Voltage $U_{dep} = 50V$ Assuming 75 µm thick bulk $P_{heat} = I \cdot U \cdot d = 3.75 \cdot 10^{-4} W / cm^{2}$ $I = 10^{-3} A / cm^{3} = 10^{-3} C / s cm^{3}$ $1C = 6.24 \cdot 10^{18} e$ $I = 6.24 \cdot 10^{15} e / s cm^{3}$

Pixel Volume $50 \cdot 50 \cdot 75 \mu m = 1.875 \cdot 10^5 \mu m^3$ $1 \mu m^3 = 10^{-12} cm^3$ $V = 1.875 \cdot 10^{-7} cm^3$

 $I = 6.24 \cdot 10^{15} \, e \, / \, s \, cm^3 \cdot 1.875 \cdot 10^{-7} \, cm^3$ $I = 1.17 \cdot 10^9 \, e \, / \, s \, pixel$

20µs Readout I = $1.17 \cdot 10^9 e / s \ pixel \cdot 20 \cdot 10^{-6} s = 2.34 \cdot 10^4 e / \ pixel$

