

First sub-electronvolt direct neutrino mass measurement with KATRIN IMPRS Colloquium

Christian Karl

Technical University of Munich Max Planck Institute for Physics

March 25, 2021

The KATRIN experiment

- \blacktriangleright Direct neutrino mass measurement using the β -decay kinematics
- Designed to measure the effective electron anti-neutrino mass $m_{\nu} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2}$ with a sensitivity of 200 meV (90 % CL)
- Taking neutrino mass data since 2019
- Current world-leading laboratory limit of $m_{
 u} < 1.1 \, {
 m eV} \, (90 \, \% \, {
 m CL})$ from our first neutrino mass campaign¹

¹ M. Aker et al., Phys. Rev. Lett., Nov 2019

Christian Karl

Neutrino mass signal in β -decay

- ► β-decay: $X \to Y + e + \nu$
- ▶ Energy $E_0 = Q E_{\text{rec}}$ split between e and ν
- ▶ *v* extremely hard to measure ⇒ measure energy spectrum of the electrons
- ► Maximum energy e can get is E₀ m_ν, but E₀ not known, also due to experimental effects
- ► Neutrino mass modifies the rate Rate $(E) \propto \sqrt{(E_0 E)^2 m_{\nu}^2}$
- Visible as change of curvature in the spectral shape of the highest energy electrons

Experimental challenge: eV-scale signal MAC-E filter

- Idea: measure all electrons with kinetic energy E > qU
- \Rightarrow Apply retarding energy in a spectrometer
- Problem: only parallel component of E "filtered"
- \Rightarrow Gradually decrease the magnetic field to transform the transversal energy into energy parallel to qU

eV-scale resolution, integral measurement as we count all electrons with energy larger than qU

Christian Karl

Measurement principle

- Main spectrometer acts as high-pass filter that rejects low-energy electrons
- Set different retarding energies in the main spectrometer
- Count all electrons that pass the filter
- Integral measurement of the tritium β-spectrum
- ▶ Repeat the ≈ 2 h long spectral scan hundreds of times

Model

Experimental response

- MAC-E filter transmission
- Energy loss by scattering

Our second neutrino mass campaign

- Runtime: 2019-09-27 to 2019-11-14
- Scan time: 31 days split in 361 scans
- Electrons in ROI: 4.2 million
- Background: 220 mcps
- ► Source activity: 84 %
- Sensitivity: $m_{\nu} < 0.7 \text{ eV} (90 \% \text{ CL})$
- All plots and analyses still preliminary, to be published soon

Data combination and likelihood

- Scan combination: counts and times added, retarding potentials averaged
- Pixel combination: grouped into rings to account for radial potential effects
- Free parameters
 - ▶ 1 Neutrino mass squared m_{ν}^2
 - ▶ 12 ringwise endpoints $E_{0,ring}$
 - 12 ringwise background rates B_{ring}
 - ▶ 12 ringwise signal amplitudes A_{ring}

$$\begin{aligned} R_{\mathsf{ring}}(qU) &= A_{\mathsf{ring}} \cdot \int_{qU}^{E_{0,\mathsf{ring}}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(E; \boldsymbol{m}_{\nu}^{2}, E_{0,\mathsf{ring}}) \cdot R(qU, E) \,\mathrm{d}E + B_{\mathsf{ring}} \\ \chi^{2}_{\mathsf{ring}} &= (R_{\mathsf{data}}(qU) - R_{\mathsf{ring}}(qU)) \cdot V^{-1} \cdot (R_{\mathsf{data}}(qU) - R_{\mathsf{ring}}(qU))^{T} \\ \chi^{2}_{\mathsf{total}} &= \sum_{\mathsf{ring}} \chi^{2}_{\mathsf{ring}} \end{aligned}$$

Christian Karl

Systematics overview

Systematics treatment

- Approach: Monte Carlo propagation of uncertainty
- Idea: fit multiple times
 - Stat.: randomize spectrum according to statistical uncertainty of data points
 - Syst.: randomize model parameters according to their knowledge
- Retrieve best-fit and uncertainties from the resulting fit-parameter distributions
- \Rightarrow Propagation of distributions

Data fit

- Multi-ring fit spectrum from Monte Carlo propagation with total uncertainty
- ▶ 3 ringwise parameters, 1 shared neutrino mass squared, 37 free parameters

▶ $\chi^2 = 277$ at 299 dof $\Rightarrow p$ -value 81 %

Neutrino mass squared distribution

$$\begin{array}{lll} \mbox{Stat. only} & m_{\nu}^2 = 0.27 \pm 0.29 \, {\rm eV}^2 & E_0 = 18\,573.69 \pm 0.02 \, {\rm eV} \\ \mbox{Total} & m_{\nu}^2 = 0.26 \pm 0.34 \, {\rm eV}^2 & E_0 = 18\,573.69 \pm 0.03 \, {\rm eV} \end{array}$$

Christian Karl

Uncertainty breakdown

Design requirement for KATRIN final: $\sigma_{total} = 0.024 \text{ eV}^2$, $\sigma_{stat} = \sigma_{syst} = 0.017 \text{ eV}^2$,

Christian Karl

Comparison with expectation for $m_{\nu}^2 = 0 \, \text{eV}^2$

- Generate randomized datasets including statistical and systematical uncertainty with m²_ν = 0 eV²
- Compare our best-fit of 0.26 eV² with the resulting distribution
- 23 % probability to have a value "as high" as ours
- $\Rightarrow\,$ Fully compatible with expectation for $m_{\nu}^2=0\,{\rm eV}^2$

Limit using method of Lokhov and Tkachov

- Insert best-fit into belt using method of Lokhov and Tkachov² (90 % CL)
- ▶ Coincides with method of Feldman and Cousins for upper limits with $m_{\nu,{\rm fit}}^2 \ge 0$
- Sensitivity: $m_{\nu} < 0.7 \text{ eV} (90 \% \text{ CL})$
- Limit: $m_{\nu} < 0.9 \, \text{eV} \, (90 \, \% \, \text{CL})$
- ⇒ First sub-electronvolt direct neutrino mass measurement and sensitivity

² A. V. Lokhov and F. V. Tkachov, Phys. Part. Nucl., May 2015

Comparison with first neutrino mass campaign

quantity (eV $^2 $ eV)	Knm1	Knm2	improvement
best fit	-0.96	0.26	_
Poisson uncertainty	0.97	0.29	factor 3.3
other uncertainties	0.31	0.16	factor 1.9
total uncertainty	1.04	0.34	factor 3.2
90% CL sensitivity	1.1	0.7	factor 1.5
90% CL limit	1.1	0.9	factor 1.2

- Significantly more statistics collected
- Improvement of all "known" systematics
- New systematic effects identified, counter-measurements in progress

Comparison of sensitivity

Combination with first neutrino mass campaign

- Multiply distributions retrieved by MC propagation
- Equivalent to adding χ^2 profile
- Does not include correlations of systematics, but...
 - ... dominated by stat. uncertainty
 - ... followed by non-Poissonian background
 - ... and other uncorrelated effects
- Combined:

 $m_
u^2 = 0.11 \pm 0.33 \, {
m eV}^2 \ m_
u < 0.8 \, {
m eV} \ (90 \, \% \, {
m CL})$

Wrapping up

- Second KATRIN neutrino mass campaign successfully analysed
- Sensitivity: $m_{\nu} < 0.7 \, \mathrm{eV} \, (90 \, \% \, \mathrm{CL})$
- Best fit: $m_{
 u}^2 = 0.26 \pm 0.34 \, {
 m eV}^2$
- Limit: $m_{\nu} < 0.9 \, {\rm eV} \, (90 \, \% \, {\rm CL})$
- Limit combined with first campaign: $m_{\nu} < 0.8 \, {\rm eV}$ (90 % CL)

18573.80 preliminary 18573.75 ີ 18573.70 ພຶ 18573.65 18573.60 -1 $m_{\rm u}^2$ (eV²)

- Publication upcoming
- Still only about $\frac{1}{50}$ th of the final statistics, stay tuned! :)

Thanks to everyone involved! Thank you for your attention!

Christian Karl